Centrum Algatech

Mikrobiologický ústav AV ČR, v.v.i. - vědecké pracoviště Třeboň

Plant epigenetics group


Epigenetic mechanisms underlie plant responses to environmental conditions – the more stable responses including cell fate modulation and developmental response as well as the rapid short-duration acclimation responses such as modulation of metabolic states. We are mainly interested in the Polycomb repressive complexes (PRCs) – the evolutionarily conserved histone modifying protein complexes that repress mainly developmental but also other genes. Our main focus lies in the developmental and metabolic transition that occurs during seed germination and the role of the PRCs in ensuring cell identity maintenance and metabolic response to ambient conditions.


          Epigenetic regulation of photoautotrophy

Seed or spore germination is coupled to major developmental and metabolic reprogramming essential for the establishment of a fully photoautotropic state in land plants. We aim to decipher (1) the role of the PRC2 in this developmental and metabolic transition and (2) its contribution to the plants´ acclimation to ambient conditions. We use the model crucifer Arabidopsis thaliana and the early land plant Bryophyte models (Physcomitrella patens and Marchantia polymorpha) to establish the extent of conservation of these regulatory mechanisms during land plant evolution.





Plant cell fate establishment and maintenance

PRCs play a crucial role in the embryo-to-seedling developmental transition in Arabidopsis thaliana, ensuring stable repression of embryo-specific genes and preventing developmental fate reversal in seedlings.  We have previously shown that PRC2-depleted cells can be induced by external plant hormone treatments to dedifferentiate and regain the potential to form somatic embryos. In our current work, we aim to elucidate the role of the PRC2 in establishing and maintaining plant cell identity and to identify approaches of targeted manipulation of cell fate.     




Iva Mozgová (ORCiD:orcid.org/0000-0002-3815-9223) https://www.researchgate.net/profile/Iva_Mozgova

Helena Hönig Mondeková (PhD student) https://www.researchgate.net/profile/Helena_Hoenig_Mondekova

       Project: The role of PRC2 in photoautotrophic metabolism

Tomáš Konečný (PhD student)

        Project: The role of PRC2 in cell identity specification

Kateřina Kabeláčová (technik/MSc student)

        Project: Phenotypic characterisation of moss PRC2 mutants


Original Research

  • Mozgova I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Köhler C, Hennig L. (2018) Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. New Phytol. DOI: 10.1111/nph.15082. https://www.ncbi.nlm.nih.gov/pubmed/29573427
  • Muñoz-Viana R, Wildhaber T, Trejo-Arellano MS, Mozgová I, Hennig L. (2017) Arabidopsis Chromatin Assembly Factor 1 is required for occupancy and position of a subset of nucleosomes. Plant J. DOI: 10.1111/tpj.13658. https://www.ncbi.nlm.nih.gov/pubmed/28786541
  • Mozgová I, Munoz-Viana R, Hennig L. (2017) PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLOS Genetics 13(1):e1006562. DOI: 10.1371/journal.pgen.1006562. https://www.ncbi.nlm.nih.gov/pubmed/28095419
  • Derkacheva M, Liu S, Figueiredo D D, Gentry M, Mozgová I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L. (2016) H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system.  Nature Plants 2(9):16126. DOI: 10.1038/nplants.2016.126. https://www.ncbi.nlm.nih.gov/pubmed/27525512
  • Havlová K, Dvořáčková M, Peiro-Pastor R, Abia D, Mozgová I, Vansáčová L, Gutierrez C, Fajkus J. (2016) Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol Biol 92(4-5):457-471. DOI:10.1007/s11103-016-0524-1. https://www.ncbi.nlm.nih.gov/pubmed/27531496
  • Pavlištová V, Dvořáčková M, Jež M, Mozgová I, Mokroš P, Fajkus J. (2016) Phenotypic reversion in fas mutants of Arabidopsis thaliana by reintroduction of FAS genes: variable recovery of telomeres with major spatial rearrangements and transcriptional reprogramming of 45S rDNA genes. Plant J. DOI: 10.1111/tpj.13257.  https://www.ncbi.nlm.nih.gov/pubmed/27377564
  • Mozgová I, Wildhaber T, Liu Q, Abou-Mansour E, L’Haridon F, Métraux J-P, Gruissem W, Hofius D, Hennig L. (2015) Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants 1(9):15127. DOI: 10.1038/nplants.2015.127. https://www.ncbi.nlm.nih.gov/pubmed/27250680
  • Muchová V, Amiard S, Mozgová I, Dvořáčková M, Gallego ME, White C, Fajkus J. (2015) Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants. Plant J 81(2): 198-209. DOI: 10.1111/tpj.12718. https://www.ncbi.nlm.nih.gov/pubmed/25359579
  • Pontvianne F, Blevins T, Chandrasekhara C, Mozgová I, Hassel C, Pontes OM, Tucker S, Mokros P, Muchová V, Fajkus J, Pikaard CS. (2013) Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states. Genes Dev 27(14): 1545-50. DOI: 10.1101/gad.221648.113. https://www.ncbi.nlm.nih.gov/pubmed/23873938
  • Derkacheva M, Steinbach Y, Wildhaber T, Mozgová I, Mahrez W, Nanni P, Bischof S, Gruissem W, Hennig L. (2013) Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J 32(14): 2073-85. DOI: 10.1038/emboj.2013.145. https://www.ncbi.nlm.nih.gov/pubmed/23778966
  • Jaške K, Mokroš P, Mozgová I, Fojtová M, Fajkus J. (2013) A telomerase-independent component of telomere loss in Chromatin Assembly Factor 1 mutants of Arabidopsis thaliana. Chromosoma 122(4): 285-93. DOI: 10.1007/s00412-013-0400-6. https://www.ncbi.nlm.nih.gov/pubmed/23564254
  • Zachová D, Fojtová M, Dvořáčková M, Mozgová I, Lermontova I, Peška V, Schubert I, Fajkus J, Sýkorová E. (2013) Structure-function relationships during transgenic telomerase expression in Arabidopsis. Physiol Plant 149(1): 114-26. DOI: 10.1111/ppl.12021. https://www.ncbi.nlm.nih.gov/pubmed/23278240
  • Majerová E, Fojtová M, Mozgová I, Bittová M, Fajkus J. (2011). Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells. Plant Mol Biol 77(4-5): 371-80. DOI: 10.1007/s11103-011-9816-7. https://www.ncbi.nlm.nih.gov/pubmed/21866390
  • Fojtová M, Peška V, Dobšáková Z, Mozgová I, Fajkus J, Sýkorová E. (2011) Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene. J Exp Bot 62(15): 5531-45. DOI: 10.1093/jxb/err235. https://www.ncbi.nlm.nih.gov/pubmed/21865176
  • Mozgová I, Mokroš P, Fajkus J. (2010). Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22(8): 2768-2780. DOI: 10.1105/tpc.110.076182. https://www.ncbi.nlm.nih.gov/pubmed/20699390
  • Hofr C, Šultésová P, Zimmermann M, Mozgová I, Prochazková Schrumpfová P, Wimmerová M, Fajkus J. (2009). Single-Myb-histone proteins from Arabidopsis thaliana: a quantitative study of telomere-binding specificity and kineticsBiochem J 419(1): 221-228. DOI: 10.1042/BJ20082195. https://www.ncbi.nlm.nih.gov/pubmed/19102728
  • Mozgová I, Schrumpfová PP, Hofr C, Fajkus, J. (2008). Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. Phytochemistry 69(9): 1814-1819. DOI: 10.1016/j.phytochem.2008.04.001. https://www.ncbi.nlm.nih.gov/pubmed/18479720

Reviews, Commentaries





Czech Science Foundation (GACR 16-08423Y) (IM)

National Programme of Sustainability (LO1416)

GAJU 2016 (HHM)