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Abstract: We analyzed elevational species richness gradients (“decline”, “increase”, “uni-
modal”, or “bimodal”) in the Himalayan range using data from 157 publications covering
both plants and animals. Our study tested the hypothesis that unimodal gradients, explain-
able by the geometric mid-domain effect, dominate in the mountains, while decreasing
or increasing gradients result from studies that only examined limited sections of the full
altitudinal range. Multivariate canonical correspondence analysis was applied to associate
gradient shapes with altitude ranges, geographic locations, and the taxa studied. Our
results show that, across taxa, most Himalayan altitudinal gradients exhibit a unimodal
shape, with diversity peaks at approximately 2500 m a.s.l. for plants and 2200 m a.s.l.
for animals. The gradient shapes were primarily influenced by three interrelated predic-
tors: vertical range, maximum elevation, and mean elevation. Studies from the world’s
highest mountain range suggest that surveys encompassing substantial portions of the
elevational range tend to produce hump-shaped gradients, while incomplete sampling
leads to declining or increasing species richness patterns.

Keywords: altitudinal ecology; elevational species richness; Himalayan biodiversity; mid-
domain effect; species diversity gradients

1. Introduction
Variations in species richness, diversity, and community composition with increas-

ing elevation represent a significant biogeographical gradient on Earth [1]. This gradient
profoundly impacts biota, influencing both plant and animal morphology [2,3], physiol-
ogy [4,5], activity patterns [6], reproduction modes [4,7], spatial distribution [8,9], and
diversity and abundance [2]. Additionally, the high number of studies of elevational
gradients allows for high reproducibility and comparison of patterns from a variety of
habitats and latitudes [10,11]. Recent research by Gordon et al. [12] indicates that changes
in biodiversity are often associated with human impacts, though the magnitude, timing,
and sometimes the direction of these associations vary across continents, biomes, and sites.
Studying biodiversity changes along elevational gradients provides valuable insights into
ecological processes on small spatial scales, helping to disentangle historical and biogeo-
graphical influences across locations [2,13]. The study by Rana et al. [14] emphasizes that
the evolutionary history of plant lineages significantly influences current species richness
patterns and climatic conditions, such as temperature and precipitation, which plays a
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crucial role in determining species richness. Environmental heterogeneity also enhances
the relationship between biodiversity and ecosystem functioning, where species richness
serves as a more powerful driver of ecosystem function than species turnover [15].

Species richness along elevation gradients may exhibit three main patterns: (1) a
decrease towards higher elevations, (2) an increase towards higher elevations, or (3) a
unimodal (hump-shaped) pattern with a peak at mid-elevations (Figure 1) [16–20]. These
patterns are influenced by a variety of factors, both biotic and abiotic factors which in-
teract in a complex way to shape the patterns of species richness we observe in different
ecosystems [21,22]. The decline in richness with elevation is often attributed to decreasing
temperatures [23], variations in precipitation [24,25], and generally lower net primary
productivity [26–28]. Conversely, an increase in richness at higher elevations can result
from cold-adapted species thriving under these conditions [29,30]. Unimodal patterns
are frequently linked to the geometry of mountain environments. If species’ elevational
preferences are randomly distributed and the number of species per elevational zone is
influenced by the species–area relationship, the greatest overlap of species distributions
occurs at mid-elevations, leading to a mid-domain effect [31–34]. Complementarily, if
both high and low elevations host diverse biotas with distinct adaptations and evolu-
tionary histories, mid-elevation zones may emerge as areas of peak diversity due to the
overlap of these biotas [35,36]. Colwell et al. [37] demonstrated that geometric constraints
and environmental favorability interact to shape species richness patterns and gradients
of environmental favorability, and helps to explain why species richness peaks at mid-
elevations. Another hypothesis to explain mid-elevational diversity peaks is centered on
the water–energy dynamic [10,38]. Beck and Chey [39] proposed that diversity at higher
elevations is constrained by ambient energy, while at lower elevations, water availability
becomes the limiting factor. This hypothesis builds on previous findings indicating a shift
from temperature to water as the primary limiting factor for diversity as latitude decreases,
suggesting an indirect, trophic cascade effect [38]. Beck and Chey’s [39] research on ge-
ometrid moths in Borneo supported the idea of energy limitation at high elevations but did
not find evidence for water limitation at lower elevations. Similarly, Beck and Kitching [11]
identified temperature as a key predictor of peak species richness for sphingid moths,
with only weak support for water as a factor. In contrast, McCain [10], studying bats, and
Hawkins et al. [38], examining plants, vertebrates, and invertebrates, found strong evidence
that both water and energy are significant predictors of diversity patterns. Although there
may not be a common pattern applicable to all sorts of organisms [40,41], it should be kept
in mind that elevation gradient studies conducted so far differed in vertical spans surveyed,
different diversity measures, and sampling methods. Nogués-Bravo et al. [42] observed a
decisive effect of scale on the shape of the species richness pattern, so that studies covering
complete elevational ranges of mountains returned unimodal, whereas those covering
upper elevations only, returned decreasing patterns. Dani et al. [43] analyzed elevational
gradients in plant species richness worldwide and also reported that diversity tends to
peak at mid or lower elevations. The hump-shaped patterns were more prevalent in the
very high mountains, with both hemispheres showing similar patterns. These patterns are
shaped by topographical and climatic factors [44].

Given that a general unimodal pattern appears as a near-linear relationship on short
gradients (Figure 1) [45], we predict that for a majority of taxa, the variation in shapes
of elevational patterns observed (decrease, increase, unimodal, or bimodal) should be
explicable by differences in study design, particularly by the elevation gradient lengths.



Diversity 2025, 17, 215 3 of 13
Diversity 2025, 17, x FOR PEER REVIEW 3 of 14 
 

 

 

Figure 1. Illustration of our focal prediction regarding the shapes of elevational species richness/di-
versity gradients observed in elevation gradient studies. The shapes of gradients covering substan-
tial parts of mountains vertical range, ideally from piedmonts to the summits, are unimodal. How-
ever, observations based on short sections of the gradient may appear nearly linear, showing in-
creasing (lower elevations) or decreasing (upper elevations) species richness patterns. Inspired by 
Nogués-Bravo et al. [42]. 

To explore this hypothesis, we targeted the Himalayas, the World’s highest mountain 
range, renowned for its vast and diverse ecosystems [41] and recognized as one of the 
most significant biodiversity hotspots. The Himalayan range, characterized by the great-
est elevational gradient on Earth, harbors extremely rich and distinctive biodiversity 
[46,47]. Himalaya is a large mountain arc that extends for 2500 km from the Nanga Parbat 
Mountain (8125 m) and the Indus River Gorge in the northwest to the Namche Barwa 
Mountain (7756 m) and the Yarlungtsangpo–Brahmaputra River Gorge in the east [48]. 
Spanning from monsoon-affected tropical regions in the south to cold continental deserts 
in the north; these mountains serve as a natural divide between the Paleotropical and Hol-
arctic floral realms (hereafter called “temperate” and “tropical” regions), as well as the 
Oriental and Palearctic faunal realms [49]. Owing to their unique biota, several biodiver-
sity hotspots are recognized there (Himalaya, Mountains of Southwest China) [50]. Nu-
merous studies describing the elevational gradients originated from the mountains, cov-
ering multiple taxonomic groups. Grytnes and Vetaas [51] observed that in the Nepalese 
Himalaya, the species richness of plants was lower at low and high altitude and observed 
highest species richness between 1500 and 2500 m. Vetaas and Grytnes [52] observed, also 
in the Nepalese Himalaya, that above 4000 m, the species richness of vascular plants de-
creases but the endemism increases. In the Bhabha valley of western Himalaya, Chawla 
et al. [53] also observed that species richness decreases along the higher elevational gradi-
ent and endemic plant species increases at higher altitudes. In the Gulmarg Wildlife Sanc-
tuary of western Himalaya, Wani et al. [54] studied the pattern of β-diversity of plants 
along an elevation gradient ranging from 2200 to 3900 m and observed that herbaceous 
and tree richness showed a significant decrease with the increase in elevation; however, 
the richness of shrubs showed a bimodal pattern. These patterns were observed also in 
the eastern part of the Himalayas. Thorne et al. [55] reported peak species richness of trop-
ical plant species at 900–1300 m and temperate plant species at higher altitudes of 2500–
2900 m in Bhutan. Chettri et al. [56] observed that the peak species richness of reptiles up 
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Figure 1. Illustration of our focal prediction regarding the shapes of elevational species rich-
ness/diversity gradients observed in elevation gradient studies. The shapes of gradients covering
substantial parts of mountains vertical range, ideally from piedmonts to the summits, are unimodal.
However, observations based on short sections of the gradient may appear nearly linear, showing
increasing (lower elevations) or decreasing (upper elevations) species richness patterns. Inspired by
Nogués-Bravo et al. [42].

To explore this hypothesis, we targeted the Himalayas, the World’s highest mountain
range, renowned for its vast and diverse ecosystems [41] and recognized as one of the
most significant biodiversity hotspots. The Himalayan range, characterized by the greatest
elevational gradient on Earth, harbors extremely rich and distinctive biodiversity [46,47].
Himalaya is a large mountain arc that extends for 2500 km from the Nanga Parbat Mountain
(8125 m) and the Indus River Gorge in the northwest to the Namche Barwa Mountain
(7756 m) and the Yarlungtsangpo–Brahmaputra River Gorge in the east [48]. Spanning
from monsoon-affected tropical regions in the south to cold continental deserts in the north;
these mountains serve as a natural divide between the Paleotropical and Holarctic floral
realms (hereafter called “temperate” and “tropical” regions), as well as the Oriental and
Palearctic faunal realms [49]. Owing to their unique biota, several biodiversity hotspots
are recognized there (Himalaya, Mountains of Southwest China) [50]. Numerous studies
describing the elevational gradients originated from the mountains, covering multiple
taxonomic groups. Grytnes and Vetaas [51] observed that in the Nepalese Himalaya, the
species richness of plants was lower at low and high altitude and observed highest species
richness between 1500 and 2500 m. Vetaas and Grytnes [52] observed, also in the Nepalese
Himalaya, that above 4000 m, the species richness of vascular plants decreases but the
endemism increases. In the Bhabha valley of western Himalaya, Chawla et al. [53] also
observed that species richness decreases along the higher elevational gradient and endemic
plant species increases at higher altitudes. In the Gulmarg Wildlife Sanctuary of western
Himalaya, Wani et al. [54] studied the pattern of β-diversity of plants along an elevation
gradient ranging from 2200 to 3900 m and observed that herbaceous and tree richness
showed a significant decrease with the increase in elevation; however, the richness of
shrubs showed a bimodal pattern. These patterns were observed also in the eastern part of
the Himalayas. Thorne et al. [55] reported peak species richness of tropical plant species
at 900–1300 m and temperate plant species at higher altitudes of 2500–2900 m in Bhutan.
Chettri et al. [56] observed that the peak species richness of reptiles up to 500–1000 m, while
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no reptiles existed above 3000 m. The lizards show the linear decline with the altitude
and snakes followed a nonlinear relation peaking at 500–1000 m. In Sikkim, Acharya and
Vijayan [57] recorded the butterfly species richness showing a unimodal pattern with the
highest species richness at 1000 m and sharp decline of species richness up to 3000 m.

We collected published elevational studies and tested potential predictors of the
pattern related to elevational gradient range, plus such characteristics of the studies as
mean and maximum elevations of the gradients. We specifically hypothesized that the
positions and lengths of the elevational gradients will influence their resulting shapes, so
that long gradients will produce unimodal biodiversity responses, whereas short gradients
in lower elevations will produce unimodally increasing trends, and short gradients in
higher elevations will produce unimodally decreasing trends.

2. Material and Methods
2.1. Data Collection

We searched for publications on the species richness along the Himalayan elevational
gradients for all taxa using the Google Scholar search engine, PubMed and Web of Science
with “elevation (-al) gradient”, “altitude (-inal) gradient”, “Himalayan elevation”, “Hi-
malayan altitude”, “species richness”, “species diversity”, “gradient analysis”, and “species
abundance” as keywords and then we searched bibliographies of the publications found
through Google Scholar for further relevant studies [accessed December 2024]. Datasets
were selected based on priority sampling criteria. We selected only those studies giving
proper locations, with elevation/altitude, latitudes, and longitudes (when not provided, we
searched for the localities on Google maps). We included only publications that reported
both abundance (i.e., number of individuals) and either species richness (i.e., number
of species within a defined region) or species diversity (a widely used index, e.g., Shan-
non’s [58]). Studies had to sample all taxa of a focal group at a minimum of four elevation
transects/points using consistent sampling methods and effort at each elevation. If several
taxa were used in a single study, we kept the taxa as separate gradient studies. For each
study, we extracted a type of the gradient shape (“decline”, “increase”, “unimodal”, or
“bimodal” of species richness/diversity along elevational gradient), studied taxon (dis-
tinguishing amphibians, ants, birds, plants, angiosperms, bryophytes, fish, Lepidoptera,
lichens, mammals, and reptiles), geographic coordinates (latitude, longitude) and informa-
tion on elevation used in a study (minimum, mean and maximum elevation, and elevation
range, i.e., gradient length) (See Supplement (S1) for the details).

2.2. Data Analyses

We used the gradient shapes (4-states factor: “decline”, “increase”, “unimodal”, or
“bimodal”) extracted from the studies as a response variable, and recorded variables describ-
ing the gradients (studied taxa, longitude, latitude, minimum elevation, mean elevation,
maximum elevation, and elevation range) as potential predictors (See Supplement S1 for
the details). Primarily, we used the χ2 test in R [59] to search for a possible difference of
numbers of individual gradient shapes per studied taxa.

Next, we employed multivariate Canonical Correspondence Analyses (CCA), which
allows for testing the effects of various sets of predictors, including their collinearities
and interactions [60], in Canoco 5 [61]. To assess the significance of the CCAs, we used
999 Monte Carlo permutations. In CCA analyses, gradient shapes constituted the multivari-
ate response variable. We first tested for the effect of studied taxon (categorical predictor)
on the gradient shapes. Second, we used a set of single-term analyses to inspect the effect of
each of the predictors on the gradient shapes. Third, we used a forward selection procedure
to build a Full model, based on a combination of predictors. Both single-term analyses
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and the Full model were calculated twice, excluding, and including studied taxa as a
categorical covariate.

3. Results
In total, we gathered data from 157 publications, reporting 229 separate gradient

studies with a good representation over the Himalayas region. The highest number of the
gradient studies targeted plants, followed by birds and arthropods (Figure 2a). The average
length of elevation range was 3325 ± 1870 SD m (minimum 300 m, maximum 7500 m), the
mean midpoint elevation was at 3008 ± 979 SD m a.s.l., the lowest point was 0 m a.s.l.,
and the highest point was 8000 m a.s.l. Only a few of the studies covered almost complete
elevation gradient (Figure 3).
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Figure 2. A representation of taxa studied (a) with relation to gradient shapes, x-axis represents the
taxon studied and y-axis represents the number of gradients with the appropriate taxon and response
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Supplement S1 for details of each of study). Gradient shapes indicated by different colors.

Majority of the examined studies from the Himalayan region reported unimodal
shapes (N = 146), followed by declines (N = 68) and increases (N = 5); three studies reported
bimodal shape (Figure 2a,b). The taxa differed in proportional representation of gradient
shapes (χ2 = 92.94, df = 33, p < 0.001). For the most frequently studied taxa, mean peak
was higher situated for plants (3126 m ± 984 SD, maximum: 5550 m) than for animals
(2538 ± 913 SD), in which it was lower for birds (2735 m ± 895, maximum: 4250 m) than
for all arthropods (2935 m ± 1218 SD, maximum: 5350 m). A comparison of peak elevations
between plants and animals revealed significantly higher elevation of plants peaks (F = 8.18,
df = 1, 227, p = 0.005).

Single-term CCAs for each predictor (Table 1) showed that the gradient shape was
significantly related to mean elevation, maximum and minimum elevation, elevation
range, and longitude regardless of controlling or not controlling for studied taxa. Latitude
was without effects, whereas minimum elevation had an effect only with taxonomy as
the covariate.
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Figure 3. Distribution of elevation ranges across 157 studies, representing 229 elevational gradients in
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Table 1. Result of single-term canonical correspondence analyses relating elevational gradient shapes
to variables describing the gradient, ordered by the amount of explained variability. Maximum
elevation, the strongest predictor of gradient shapes, was returned as the single predictor also in
forward selection based on all variables with significant single effect. The right column with p values
is adjusted for a Holm correction.

Variable. Contribution When Alone (%) Pseudo-F p

Taxon

No covariable

Maximum elevation 72.3 17.46 0.001

Elevation range 64.6 15.49 0.001

Mean elevation 23.3 5.35 0.001

Longitude 20.2 4.63 0.009

Minimum elevation 9.0 2.03 0.096

Latitude 3.5 0.80 0.476

Taxonomy as covariable

Maximum elevation 13.6 14.29 0.001

Elevation range 10.7 14.01 0.001

Mean elevation 9.0 5.48 0.040

Longitude 3.5 6.70 0.002

Minimum elevation 2.8 3.94 0.009

Latitude 0.9 1.07 0.339

The forward selection from all predictors (Full model: explained variation 9.14%,
first axis pseudo—F 10.8, pseudo—p < 0.001, all axes pseudo—F 11.4, pseudo—p < 0.001;
full model with taxonomy covariable: explained variation 10.15%, first axis pseudo—F 6.9,
pseudo—p < 0.001, all axes pseudo—F 8.1, pseudo—p < 0.001) returned maximum elevation,
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longitude, and in the case without covariable, also elevation range as predictors for the
gradient shape responses (Figure 4).
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in single-term analyses (cf. Table 1) on elevation gradient shapes (i.e., full model used for forward
selection of variables). Maximum elevation, the sole predictor sufficient to explain the pattern, is
shown in red.

Visualizing the predictors with significant effects showed that high values of maxi-
mum elevation, elevation range and longitude were positively intercorrelated, all pointing
towards a unimodal gradient shape. On the contrary, short gradients (i.e., low values
of elevational range) revealed either increasing or decreasing species richness/diversity,
and low-elevated gradients (i.e., low values of maximum elevation) indicated an increase
in species richness with altitude (Figure 4). These patterns were retained when treating
studied taxa as covariates (Table 1).

4. Discussion
Across taxa, a great majority of elevational gradient studies in the Himalayan region

returned a unimodal altitudinal pattern of species richness. This pattern was characteristic
of gradients spanning a broad elevational range, while gradients with a short elevational
range exhibited either a consistently increasing or decreasing species richness. In addition,
monotonous increases were associated with low mean and maximum gradients‘ elevations,
whereas monotonous decreases were associated with those with high mean elevations.
These observations support our original hypotheses that a unimodal response of species
richness to elevation prevails in Himalayan biota, and those studies reporting decreasing
or increasing species richness with altitude covered subsets of elevational range of the
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mountains. We concur with Nogués-Bravo et al. [42] that focusing exclusively on the upper
portions of elevational gradients can lead to the appearance of decreasing species richness
patterns. Additionally, we support Kessler et al. [62], who emphasized the importance of
covering entire elevational gradients in global fern studies. Costa et al. [63] also highlights
a bias in detecting species richness patterns along elevation gradients, largely influenced by
factors such as the number of sampling units, the range covered, and the comprehensiveness
of mountain sampling in a global meta-analysis of major terrestrial taxa.

Our Himalayan analysis supports the prevalence of unimodality for a broad range of
taxa in a major mountain range. For the most frequently studied taxa, the species richness
peaks were situated in 2000–3500 m., i.e., in the altitudinal belt of deciduous broadleaf
forests (southern Himalayan slopes oriented towards Oriental tropics) or coniferous forests
(NE and N slopes, oriented towards Palearctic temperate zones). A high diversity of
birds, insects, and many other groups in South Himalayan Mountain forests is a well-
established fact, e.g., [64–66]. Only for plants, some of the diversity peaks (n = 31) reached
the subalpine to alpine vegetation (>≈3000 m). The two highest-elevation richness peaks
were reported by Baniya et al. [67] and Klimes [68] who nevertheless covered rather
short and primarily alpine gradients (elevational ranges 4985–5685 and 4180–5970 m a.s.l.,
respectively). The other authors reporting plant diversity peaks in alpine elevations covered
substantially longer gradients, spanning > 3000 m a.s.l. [53,54,68–76]. These observations
suggest that at least in some parts of the mountains, diversity peaks of Himalayan plants
may be located above those of animals. This may reflect the radiation of some plant
groups in Himalayan (sub)alpine altitudes [77,78], or high alpha-diversity of some plant
groups in high altitude environments, resulting in highly situated plant diversity peaks.
Alternatively, the apparently higher-elevated diversity peaks reported for plants may be
due to considerably easier sampling of plants, which have limited mobility and are non-
cryptic, compared to the difficulties with sampling mobile and/or cryptic animals in harsh
terrains of high elevations.

Unimodal species richness patterns [79–81] were also reported from other major moun-
tain ranges, both temperate and tropical, the former including, e.g., plants in Norway [82],
land snails in Europe [83], mammals in American Rocky Mountains [84], geometrid moths
in Borneo [39], or beetles and moths in Korea [85]; and the latter, e.g., leaf litter inverte-
brates in Panama [16], ferns in Costa-Rica [86], sphingid moths in southeast Peru [87], or
mammals of the Philippines [88]. Geometrid moths in mountains worldwide [89] also
revealed unimodal patterns.

Reversing the argument that sampling long elevational gradients results, almost
invariably, in unimodal elevational species richness patterns, leads to the conjecture that
the uniformly increasing or decreasing richness patterns are results of incomplete vertical
sampling. If so, the monotonously decreasing or increasing gradients do not require
additional biological explanation. Still, groups whose distribution towards elevational
extremes is truncated by their biology likely represent exceptions from the rule. Towards
the upper extremes, these most likely include trees, limited by physical limits to their
growth [90]; fish, limited in high altitudes by absence of sufficiently large water bodies [91];
and perhaps other ectothermic vertebrates. Groups truncated towards lower elevational
limits might include weakly competitive organisms, such as lichens or orchids.

Although the unimodal patterns fit the geometry-derived null hypothesis of the
mid-domain effect [92,93], they deserve to be further analyzed regarding underlaying
physiological, ecological, or evolutionary mechanisms, which may vary among taxa, but
also regions of the world. Hu et al. [94] demonstrated that the biotas of different functional
or climatic guilds, along with their turnover and climatic data, can effectively explain the
formation of the unimodal pattern. Furthermore, high altitude species overlapping in mid
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altitudes with lowland species could have originated from autochthonous high altitude
radiations [95,96]; dispersed to the mountains from higher latitudes, perhaps during periods
of cooler climate cf. [97,98], or derived from lowland biotas by endemic speciation [99].
In the Himalayas, the diversity of high altitudes is often of Palearctic/Holarctic origin,
whereas lowland species are Oriental [100].

Cross-taxon analyses focusing on deciphering the mechanisms behind the unimodal
patterns are highly desirable, but the data at hand do not allow them at this moment. The
necessary conditions would be complete species lists for the attitudinal points surveyed,
together with abundances. Such data would allow relating life history traits of species in-
habiting different altitudes to their phylogeny and abiotic conditions. Only a small fraction
(n = 12) of the 157 papers considered here also reported original data. Without species-level
data, understanding the unique composition of individual species communities along
gradients and explaining the formation of the general unimodal pattern of species richness
is impossible.

5. Conclusions
Using published information on elevational species richness gradients covering di-

verse taxa from the Himalayan Mountain range, we demonstrated that a vast majority of
the gradients display unimodal responses to elevation, or mid-elevation diversity peaks.
Gradients reporting a monotonous decrease or increase in species richness covered rela-
tively short elevation ranges in the upper or lower parts of the mountains, respectively.
The observation that plant species richness peaks at higher elevations than animal richness
indicates that much work is still needed to understand biological mechanisms generating
the unimodal gradients. For this, researchers should publish not only information on
species richness, but also lists of the species recorded.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d17030215/s1, Supplement S1. A spreadsheet summarizing publica-
tions and separate gradient studies, used in our study testing potential predictors of the pattern
related to elevational gradient range. List “Alt_Himalayas” shows the data, list “References” the
publications details.
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