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Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses 
solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an 
excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane 
and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding 
the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial 
PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and sug-
gest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be ad-
dressed in future research.
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PSII: a sophisticated solar-driven 
nano-machine
PSII is one of 2 types of photosynthetic reaction center 
located in the thylakoid membranes of cyanobacteria, 
algae, and plants, the other being PSI (Shen 2015). From a 
functional point of view, PSII is a water:plastoquinone 
photo-oxidoreductase (EC number 1.10.3.9) catalyzing the 
light-driven reduction of plastoquinone to plastoquinol 
and the oxidation of water to molecular oxygen and protons. 
PSII also contributes to the proton-motive force used to drive 
ATP synthesis (Qi et al. 2023). Recent advances in structural 
biology especially cryogenic-electron microscopy (cryo-EM) 
have provided detailed, high-resolution structures of PSII 
complexes isolated from a variety of photosynthetic organ-
isms (Cao et al. 2020). These data clearly document the con-
served character of the central part of PSII, called the PSII 
core complex (RCCII).

Efficient assembly of PSII and its prompt repair in response to 
light-induced irreversible damage, or chronic photoinhibition, 

is vital for maintenance of PSII activity and growth. Both pro-
cesses have been intensively studied, especially in cyanobac-
teria, which have provided the most detailed structural 
information. Figure 1 presents an overview of the cryo-EM 
structure of the dimeric oxygen-evolving PSII complex iso-
lated from the cyanobacterium Synechocystis PCC 6803 
(hereafter Synechocystis; Gisriel et al. 2022), which is widely 
used to study cyanobacterial PSII biogenesis. Each monomer 
is composed of 4 large and 17 small intrinsic and 4 extrinsic 
subunits and contains 35 chlorophylls (Chls), 10 β-carotenes, 
and several other cofactors. The chlorin cofactors involved 
in the initial steps of light-induced charge separation leading 
to reduction of plastoquinone and oxidation of water are 
bound to a central heterodimeric reaction center complex 
of the D1 and D2 subunits (RCII). The inner antennae, 
CP47 and CP43, bound symmetrically to D2 and D1, respect-
ively, absorb light energy and deliver it to RCII to drive 
charge separation. CP43 is also involved with D1 in the liga-
tion of the Mn4CaO5 metal cluster that oxidizes water 
(Ferreira et al. 2004; Umena et al. 2011; Shen 2015). These 
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large subunits are surrounded by several smaller transmem-
brane subunits of less well-defined function.

In contrast to the very conserved core of PSII, different sets 
of proteins bind to the lumenal side of PSII to optimize the 
function of the Mn4CaO5 cluster (Ifuku and Noguchi 2016). 
Synechocystis PSII contains the PsbO, PsbU, PsbV, and PsbQ 
(also termed CyanoQ) subunits (Fagerlund and Eaton-Rye 
2011), whereas in other cyanobacteria CyanoQ is detached 
during purification and is absent (Michoux et al. 2014). In 
the case of plant chloroplasts there are 4 extrinsic subunits: 
PsbO, PsbQ, PsbP, and PsbTn (Wei et al. 2016). The periph-
eral light-harvesting complexes that associate with PSII to 
form large PSII supercomplexes are even more diverse (Cao 
et al. 2020; You et al. 2023). In the case of cyanobacteria, 
the soluble phycobilisome docks onto the cytoplasmic 
surface of PSII (You et al. 2023), whereas transmembrane 
light-harvesting complexes are found in land plants 
(Lokstein et al. 2021).

The beginning of the journey: translation of 
core subunits and formation of modules
PSII assembly proceeds in a step-wise process via discrete assem-
bly intermediates (Nixon et al. 2010; Komenda et al. 2012a; 
Nickelsen and Rengstl 2013) (Fig. 2). The abundance of these in-
termediates is generally low in wild type (WT) but can be en-
hanced in mutants blocked at specific stages of assembly (de 

Vitry et al. 1989; Komenda et al. 2004) (Fig. 2). Assembly occurs 
in distinct membrane compartments (biogenesis centers or 
zones) in cyanobacteria, algae, and plants and is discussed in de-
tail by Nickelsen et al. (this issue).

Although the organization of the PSII biogenesis center 
remains enigmatic, such a membrane domain should be 
abundant in the translation and translocation machineries 
engaged in the production of PSII core subunits. D1, D2, 
CP43, and CP47 are polytopic membrane proteins that are 
likely inserted into the membrane via the signal recognition 
particle (SRP) pathway (Hristou et al. 2019; for review, see 
Cymer et al. 2015). The cyanobacterial SRP consists of the 
Ffh protein and a small RNA molecule, which together 
scan the ribosome exit, recognize hydrophobic sequences, 
and target them to the SecYEG translocon, a transmembrane 
channel that allows translocation of nascent protein chains 
across the membrane. The translocon can associate with 
the YidC foldase/insertase, which assists the lateral exit of 
transmembrane helices (TMHs) from the translocon and 
the translocation of the periplasmic domains across the 
membrane (for review of YidC, see Hennon et al. 2015). 
YidC and its plastid homologue ALB3 are involved in the syn-
thesis of all large cyanobacterial Chl-binding proteins of PSII 
and PSI (Pasch et al. 2005).

Integration of multi-spanning membrane proteins may 
proceed by either the stepwise integration of single trans-
membrane segments or by the cooperative insertion of 2 
or more TMHs (Ota et al. 1998). However, the precise 

Figure 1. Proteins and cofactors of dimeric oxygen-evolving cyanobacterial PSII. A) Cartoon shows all subunits in the available structure of 
Synechocystis PSII (PDB: 7N8O) as a top view from the cytoplasmic side (left) and side-view along the membrane plane (right). B) The structure 
of the same complex highlighting the cofactors. The left side shows the location of chlorophyll a (Chl a), β-carotene (β-Car), and heme b; the right 
panel shows the plastoquinone (PQ), pheophytin a (Pheo), Chl a, non-heme iron, bicarbonate, and water-splitting Mn4CaO5 cluster associated with 
D1 and D2. Please note that the orientation of the structures in (B) corresponds to the cartoons in (A).
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mechanism for PSII subunits remains to be determined, es-
pecially the role of the SecA cytosolic motor (van Wijk et al. 
1995; Wang et al. 2017b).

PSII core subunits bind a number of Chl cofactors and, at 
least in the case of CP43 and CP47, Chl molecules need to 
be inserted co-translationally as a prerequisite for correct 
folding (Shen et al. 1993; Manna and Vermaas 1997). The ac-
cumulation of D1 and D2 appears less Chl-dependent as un-
assembled D1 can be detected in Synechocystis mutants 
depleted in Chl (Kiss et al. 2019; Skotnicová et al. 2024) 
and D2 can be detected in Chl-free etioplasts (Müller and 
Eichacker 1999). As discussed later, PSII biogenesis needs to 
be tightly coordinated with Chl biosynthesis and turnover 
to deal safely with this highly phototoxic pigment. The pres-
ence of β-carotene is also critical for the biogenesis of PSII 
with the stability of the CP47 and CP43 Chl-binding anten-
nae dramatically impaired in a Synechocystis mutant lacking 
this pigment (Sozer et al. 2010). However, in contrast to Chl, 
carotenoids can safely accumulate as free molecules in the 
membrane. It is thus expected that β-carotene is transferred 
spontaneously to apoproteins from a membrane pool during 
Chl incorporation to provide efficient photoprotection 
(Domonkos et al. 2013).

The assembly and stability of PSII is also dependent on li-
pids, which are integral components of PSII (Guskov et al. 
2009), with phosphatidyl-glycerol and sulfoquinovosyl- 
diacylglycerol needed for stabilization of PSII dimers and stable 
binding of CP43 within PSII (Laczkó-Dobos et al. 2008; 
Nakajima et al. 2018).

During insertion into the membrane, or soon after, D1, D2, 
CP47, and CP43 bind pigments and other cofactors and asso-
ciate with neighboring small membrane PSII subunits to form 
“assembly modules.” These small, pigmented complexes exist 

in the membrane autonomously before associating with the 
other modules to form larger assembly complexes and the fi-
nal oxygen-evolving PSII complex (Fig. 2). Except for the D1 
assembly module (D1mod), which probably needs to be pro-
duced de novo, the other 3 assembly modules (D2mod, 
CP47mod, and CP43mod) can be recycled from photodamaged 
PSII (Komenda and Masojídek 1995; Yao et al. 2012).

Additionally, accessory factors not present in the final 
functional PSII complex associate transiently with assembly 
modules and larger assembly intermediates to promote or 
regulate assembly and protect vulnerable assembly inter-
mediates from damage (Johnson and Pakrasi 2022).

D1 and D2 assembly modules
Apart from a few exceptions, such as Euglena, the D1 subunit 
is synthesized as a precursor protein (pD1) with a C-terminal 
extension in the range of 8 to 16 amino-acid residues. This 
extension is cleaved by the CtpA protease (Anbudurai 
et al. 1994) to reveal the free carboxyl group of the conserved 
C-terminal alanine residue of mature D1 (Nixon et al. 1992), 
which acts as a bidentate ligand to the Mn4CaO5 cluster 
(Umena et al. 2011). In cyanobacteria the 16 amino-acid ex-
tension is cleaved in 2 steps (Komenda et al. 2007a) via an 
intermediate form of D1 (iD1) (Inagaki et al. 2001). 
Whereas pD1 is only detected in an unassembled state, iD1 
is present in the D1mod and larger subcomplexes 
(Komenda et al. 2004).

The Synechocystis D1mod has recently been isolated 
and found to contain close to stoichiometric amounts of 
the small PsbI subunit and the Ycf48 assembly factor 
(Knoppová et al. 2022). The lumenal Ycf48 protein (and its 
plant homologue HCF136) is important for PSII accumulation, 

Figure 2. Modular de novo assembly of PSII. According to our model (Komenda et al. 2012a), PSII is built from 4 preassembled modules (D1mod, 
D2mod, CP47mod and CP43mod) in a step-wise manner. Each module contains 1 core chlorophyll-binding subunit of PSII already associated with a set 
of small subunits (as indicated) and with pigment cofactors. D1mod and D2mod combine first to produce the RCII reaction center assembly complex, 
which associates with CP47mod to form the RC47 assembly complex that is then converted to the RCCII non–oxygen-evolving PSII intermediate 
by binding CP43mod. The final steps of assembly to produce oxygen-evolving PSII involve light-driven assembly of the Mn4CaO5 cluster and 
attachment of the lumenal subunits and dimerization. The picture was prepared using the cryo-EM structure of Synechocystis PSII (PDB: 7N8O) 
(Gisriel et al. 2022).
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more so in chloroplasts (Meurer et al. 1998; Plücken et al. 
2002) than cyanobacteria (Komenda et al. 2008). Ycf48/ 
HCF136 is a 7-bladed beta-propeller protein that acts 
early in assembly by binding to D1mod and facilitating 
formation of the RCII complex (Yu et al. 2018) (Fig. 3). 
Ycf48 also co-purifies with YidC suggesting engagement of 
Ycf48 with lumenally exposed regions of D1 early in 
translation, possibly to aid folding and the binding of Chl 
(Yu et al. 2018).

The isolated Synechocystis D2mod contains D2 and cyto-
chrome b559 (Cyt b559) as anticipated from earlier studies 
in barley (Müller and Eichacker 1999) and Synechocystis 
(Komenda et al. 2008; Fig. 2). Cyt b559 consists of a heme b 
molecule ligated by 2 small proteins [PsbE (alpha) and 
PsbF (beta)]. Deletion of PsbE or PsbF abolishes PSII assembly 
(Pakrasi et al. 1988; Morais et al. 1998; Swiatek et al. 2003) by 
preventing accumulation of D2 (Shukla et al 1992; Komenda 
et al. 2004). Mutation of the His ligands to the heme pro-
foundly impairs the assembly, photoprotection, and repair 
of PSII (Morais et al. 2001; Hung et al. 2010; Hamilton et al. 
2014), but the precise role of Cyt b559 remains enigmatic 
(Pospíšil 2011).

Also found at substoichiometric levels in D2mod is CyanoP, 
a protein distantly related to the PsbP extrinsic subunit of 
chloroplast PSII and the PPL1 subunit (Thornton et al. 
2004; Michoux et al. 2010) implicated in PSII assembly in 
plants (Che et al. 2020). CyanoP appears to protect D2mod 

from proteolysis, with its absence leading to overaccumula-
tion of newly synthesized D1mod (Knoppová et al. 2016).

Other proteins that co-purify at low levels with D2mod in-
clude 2 proteins, Slr0575 and Slr1470, with homologues in 
chloroplasts (Knoppová et al. 2022). While the function of 
Slr1470 remains to be determined, Slr0575 has a stabilizing 
effect on D2 in Synechocystis (Knoppová et al. 2022). The 
plant homologue of Slr0575 called APE1 appears to be im-
portant for the acclimation of Arabidopsis to high irradiance 
(Walters et al. 2003), but its effect on RCII formation in chlor-
oplasts remains unknown. A preliminary report suggests that 
growth of the Chlamydomonas ape1 null mutant (Chazaux 
et al. 2019) is more photosensitive, which agrees with a pos-
sible role in RCII formation/stability.

Both the isolated D1mod and D2mod contain Chl and 
β-carotene but lack Pheo (Knoppová et al. 2022). Given the 
potential loss of pigment during purification, it remains un-
clear how many pigments bind to each module in vivo.

Structure of the photochemically active 
RCII complex
The RCII complex, formed from the association of D1mod and 
D2mod, has been isolated from a Synechocystis strain lacking 
CP47 (Knoppová et al. 2014; Knoppová et al. 2022) and its 
cryo-EM structure recently determined (Zhao et al. 2023). 

Figure 3. Scheme for involvement of PSI in PSII biogenesis in Synechocystis. A) Under low-stress conditions, the assembly of PSII begins with the 
formation of RCIIa reaction center complexes with the assistance of early assembly factors indicated in square brackets. According to our working 
model (see the text), the PSI monomeric core is either in close vicinity or in physical contact with RCIIa and serves as a scaffold for the later assembly 
steps. In this scheme, factors involved in each assembly step are listed below the name of the corresponding module or assembly intermediate (blue 
and green signify cyanobacterial and eukaryotic homologues). It should be noted that some factors are present in multiple assembly complexes (e.g. 
the RubA rubredoxin-domain protein has been identified in RCIIa, RC47, and RCCII complexes). B) Under stress conditions, such as high light, PSI 
complexes are not produced, and the synthesis of CP47mod and CP43mod is also weakened due to the lack of available Chl. PSII biogenesis is achieved 
through an alternative pathway that involves the RCII* intermediate, which is photo-protected by the associated Ycf39-HliC/D subcomplex (Ycf39/ 
Hlips). Unlike RCIIa, RCII* exists as an individual entity. The CP47mod and CP43mod antenna mainly originate from disassembled (damaged) PSII. 
CP47m is photoprotected by HliA/C and HliB/C heterodimers, while free CP43mod can associate with PSI, which serves as a sink for absorbed ex-
citation energy.
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Isolated RCII is photochemically active and performs primary 
charge separation between the P680 electron donor and 
Pheo electron acceptor (Knoppová et al. 2022). All the ex-
pected pigment cofactors of D1/D2 are present in very simi-
lar positions to that found in high resolution structures of 
PSII core complexes (Umena et al. 2011; Wei et al. 2016; 
Gisriel et al. 2022), except for the loss of 1 β-carotene on 
the D2 side of the complex, which most probably occurred 
during purification (Knoppová et al. 2022). Also absent are 
the plastoquinone electron acceptors, QA and QB, and the 
Mn cluster, while the non-heme iron is clearly recognized 
in the structure. Because it is ligated by 4 histidine residues, 
2 provided by D1 and 2 by D2, its insertion most probably 
occurs during the formation of the heterodimer. The origin 
of the 2 Pheo molecules in D1/D2 is enigmatic because there 
is no evidence for the existence of a general, PSII-specific 
magnesium dechelatase activity essential for generating 
Pheo a from Chl a.

The RCII structure also reveals how the Ycf48 assembly 
factor docks onto the lumenal surface of the complex. In 
most cyanobacteria the protein is processed at the N ter-
minus, and the resulting N-terminal Cys residue (Cys29 in 
Synechocystis) is lipidated, whereas in chloroplasts lipidation 
is absent (Knoppová et al. 2021) and the protein contains an 
additional 19 amino-acid insertion located between blades 3 
and 4 (Yu et al. 2018). A conserved arginine-rich patch of 
Ycf48 interacts with acidic residues on the luminal surface 
of the D1 protein, while the C-terminal tail of D1 binds 
into a groove on Ycf48. These regions of D1 ligate the metal 
ions of the Mn4CaO5 cluster, and therefore binding of Ycf48 
to D1 blocks ligation of Mn ions and formation of the 
oxygen-evolving cluster. This mechanism avoids photooxida-
tive damage potentially induced by the premature binding of 
Mn ions to D1 and ensures that assembly of the cluster oc-
curs at the appropriate stage of assembly. Steric clashes be-
tween Ycf48 and the lumenal loops of CP47 and CP43 
might contribute to detachment of Ycf48 upon formation 
of larger assembly complexes, although other proteins might 
participate (Zhao et al. 2023).

Another assembly factor co-purifying with RCII is rubre-
doxin A (RubA) named after its cytoplasmic rubredoxin 
domain (Wastl et al. 2000), which is attached to the mem-
brane via a single TMH at its C terminus. In most cyanobac-
teria the rubA gene is located immediately upstream of the 
ycf48 gene, suggesting a functional relationship. Indeed, a 
RubA-Ycf48 fusion protein substitutes for both the RubA 
and Ycf48 functions, suggesting their proximity in PSII (Kiss 
et al. 2019). RubA is conserved across oxygenic phototrophs, 
and a function in PSII was initially suggested by its co- 
localization with Guillardia PSII particles (Wastl et al. 2000). 
By contrast, RubA in the cyanobacterium Synechococcus 
7002 was originally proposed to play a role in the biogenesis 
of Fe-S clusters in PSI (Shen et al. 2002). Later analyses of 
knockout mutants have confirmed a primary role in PSII func-
tion (Calderon et al. 2013; García-Cerdán et al. 2019; Kiss et al. 
2019), with the PSI deficiency seen in cyanobacterial mutants 

an indirect effect (Kiss et al. 2019). Accumulation of a D1 deg-
radation product in a Chlamydomonas rubA null mutant 
(Calderon et al. 2023) implies a role in the correct folding 
and/or stabilization of D1mod. One possibility is that the rubre-
doxin domain binds ferrous ions and that RubA delivers the 
non-heme iron to the acceptor side of PSII, thereby stabilizing 
the D1 structure; however, convincing evidence is still lacking, 
and a redox role cannot yet be excluded (Kiss et al. 2019; 
Calderon et al. 2023).

CyanoP, detected in D2mod (Knoppová et al. 2016), re-
mains bound to RCII, although in sub-stoichiometric amounts 
(Knoppová et al. 2022). CyanoP is apparently much less im-
portant for PSII biogenesis than Ycf48 because the CyanoP 
null mutant behaves like WT. In the absence of D2, CyanoP 
co-purifies with Ycf48 (Knoppová et al. 2016), indicating an 
interaction between Ycf48 and CyanoP that may increase 
the efficiency of RCII formation from D1mod and D2mod. 
Unfortunately, both CyanoP and RubA are absent from the 
recent RCII cryo-EM structure, and their exact locations with-
in RCII remain unknown (Zhao et al. 2023). Whether PLP1, 
the closest plant homologue to CyanoP, fulfils a similar role 
to CyanoP in chloroplasts remains unclear.

Also detected in RCII complexes of Synechocystis is PsbN 
(Knoppová et al. 2022), of unknown function, which had pre-
viously been assigned a role in the early steps of PSII assembly 
in tobacco (Torabi et al. 2014).

Role of the Ycf39/Hlips complex in 
photoprotection
The RCII complex (named RCIIa in Knoppová et al. 2022) con-
taining Ycf48, CyanoP, and RubA is detectable in Synechocystis 
grown under standard growth conditions (Fig. 3) and probably 
represents a cyanobacterial “default” assembly path. Increased 
irradiance induces the accumulation of a larger form of RCII 
(designated RCII* in Synechocystis), which is associated with 
binding of an additional pigment/protein complex consisting 
of the Ycf39 assembly factor (Ermakova-Gerdes and Vermaas 
1999; Knoppová et al. 2014) and 2 members of the High-light- 
inducible protein (Hlip) family termed HliC and HliD 
(Dolganov et al. 1995; Fig. 3). These Hlip subunits are also desig-
nated ScpB and ScpE, respectively, as they are small cab-like 
proteins (Scps) related to the light-harvesting Chl-a/b–binding 
proteins found in chloroplasts (Funk and Vermaas 1999; see 
below).

The HliC/D pair and 2 other Synechocystis Hlips (HliA and 
HliB) have been shown to bind 4 to 6 Chls and 2 carotenoids 
in an energy dissipative configuration that leads to the con-
version of the absorbed light energy into heat (Staleva et al. 
2015; Shukla et al. 2018; Pazderník et al. 2019; Konert et al. 
2022). Ycf39 is a member of the atypical short-chain alcohol 
dehydrogenase/reductase (SDR) family and is of unknown 
function. Although the Ycf39/Hlips complex is not essential 
for assembly of PSII, and synthesis of D1 is not markedly af-
fected under low stress conditions, the incorporation of 
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newly synthesized D1 into PSII is affected in the mutant 
under high light (Knoppová et al. 2014). The HliC/D pair 
bound to RCII via Ycf39 is therefore likely to play a photopro-
tective role in dissipating energy absorbed by RCII (Knoppová 
et al. 2014). Hlips also have the capacity to scavenge free 
Chls, which would otherwise elicit the generation of singlet 
oxygen (Sinha et al. 2012) and might participate in Chl recyc-
ling (Knoppová et al. 2014), but this role needs further 
confirmation.

Although progress in understanding the early steps of PSII 
assembly in plants has been slower in comparison with 
cyanobacteria, recent evidence suggests that the initial steps 
are highly conserved. The equivalent complex to Ycf39/Hlips 
in chloroplasts consists of HCF244 and a pair of Hlip homo-
logues named one-helix protein 1 (OHP1) and one-helix pro-
tein 2 (OHP2), which co-purify with RCII and, by analogy, 
probably play a photoprotective role (Myouga et al. 2018; 
Li et al. 2019; Maeda et al. 2022). In Arabidopsis all 3 compo-
nents of the HCF244/OHPs complex are needed for normal 
D1 synthesis and accumulation of PSII (Link et al. 2012; 
Chotewutmontri and Barkan 2020; Hey and Grimm 2020), 
whereas in Chlamydomonas, the requirement of OHP2 
and HCF244 homologues for D1 synthesis is less strict 
(Wang et al. 2023).

CP43-less PSII intermediate (RC47)
The next step in PSII assembly involves the attachment of 
CP47mod to RCII to form the non-oxygen-evolving RC47 
complex (Fig. 2). The binding of CP47mod is rapid, and RCII 
is hardly detectable in vivo under optimal growth conditions 
(de Vitry et al. 1989; Komenda et al. 2004).

Analysis of a His-tagged derivative of CP47mod from 
Synechocystis indicates that CP47mod binds a virtually com-
plete set of Chl and β-carotene molecules (Boehm et al. 
2011). The conserved Pam68 factor containing 2 TMHs 
(Armbruster et al. 2010) is thought to act early in the synthe-
sis of CP47 by binding to the apopolypeptide to promote 
Chl-binding. It was speculated that the coordination of 
Pam68, YidC, and Ycf48 fixes the nascent CP47 subunit in 
a position that is amenable to Chl binding (Bučinská et al. 
2018). In chloroplasts PAM68 acts in concert with the 
DEAP2 factor, with the lack of both proteins resulting in 
loss of functional PSII (Keller et al. 2023).

CP47mod contains several neighboring small transmem-
brane subunits: PsbH, PsbL, PsbM, and PsbT (Boehm et al. 
2011). PsbM and PsbT form part of the interface between 
the PSII monomers within the dimer (Umena et al. 2011) 
and contribute to the formation of the PSII dimer (Bentley 
et al. 2008). Loss of either PsbL or PsbT has multiple effects, 
including modification of the properties of QA and QB and 
enhanced sensitivity to photodamage (Luo et al 2014; 
Fagerlund et al. 2020). The single TMH of PsbH interacts 
with helices II and III of CP47, and its N-terminal tail is folded 
over the cytoplasmic (stromal) surface of CP47. PsbH helps 

bind Chl and β-carotene and its binding to CP47 might 
help detach Pam68 (Bučinská et al. 2018).

RC47 is relatively abundant in oxygenic phototrophs and 
represents a heterogeneous mixture of complexes formed 
during both assembly and repair of PSII (Adir et al. 1990; 
Barbato et al. 1992; Komenda and Masojídek 1995; Boehm 
et al. 2012b). Since CP43 provides a Glu ligand to the 
Mn4CaO5 cluster (Ferreira et al. 2004), RC47 assembly com-
plexes lack the Mn4CaO5 cluster but are still capable of light- 
driven electron transfer from tyrosine Yz to QA (Rögner et al. 
1991; Boehm et al. 2012b). A subpopulation of RC47 contain-
ing the early assembly factors Ycf48, RubA, and CyanoP has 
also been detected and may represent PSII in the process of 
repair (Knoppová et al. 2016; Yu et al. 2018; Kiss et al. 2019).

The Psb28 subunit is present in both RC47 and in larger 
core complexes containing CP43 (RCCII) (Kashino et al. 
2002; Dobáková et al. 2009; Sakata et al. 2013; Bečková 
et al. 2017a) (Fig. 3). Early crosslinking experiments proposed 
that the extrinsic Psb28 subunit was in contact with the cyto-
plasmic N-terminal tails of both Cyt b559 subunits (Weisz 
et al. 2017). However, the latest cryo-EM structures have re-
vealed that D1, D2, and CP47 are the main interacting part-
ners (Xiao et al. 2021; Zabret et al. 2021). Binding of Psb28 
induces substantial structural changes to the cytoplasmic re-
gions of D1 and D2 so that the QB pocket is distorted, the 
non-heme iron is ligated by residue Glu241 in the D2 subunit, 
rather than by bicarbonate in oxygen-evolving PSII, and bind-
ing of CP43mod is destabilized.

These substantial conformational changes may stabilize re-
duced QA and protect PSII from photodamage by reducing 
the production of singlet oxygen from Chl triplet states pro-
duced via charge recombination (Brinkert et al. 2016; Zabret 
et al. 2021). Furthermore, attachment of Psb28 to the cyto-
plasmic surface of RC47 aids photoprotection by preventing 
docking of the phycobilisome. Nevertheless, the physiological 
function of Psb28 is still not yet clear. Levels of RC47 are al-
most undetectable in a psb28 null mutant of Synechocystis 
and assembly as well as repair seem to proceed faster than 
in WT (Dobáková et al. 2009, Bečková et al. 2017a). Binding 
of Psb28 therefore seems to block assembly of a fraction of 
newly assembled PSII at the stage of RC47 (or RCCII with 
weakly bound CP43), perhaps to confer a special function 
to a subpopulation of RC47, such as in Chl biosynthesis 
(see below).

In Synechocystis 2 Hlip heterodimers (HliA/C and HliB/C) 
associate with CP47mod during stress (Fig. 3) and are detected 
in RC47 as well as in the PSII core complex (RCCII) 
(Promnares et al. 2006; Yao et al. 2007; Konert et al. 2022). 
These Hlips are likely to photoprotect PSII assembly inter-
mediates containing CP47, but definitive evidence is lacking. 
Cyanobacteria also contain a protein, designated Psb34, with 
a long N-terminal tail similar in primary structure to the 
N-termini of HliA/HliB but lacking the Chl-binding domain. 
Cryo-EM structures have revealed that N-terminal part of 
Psb34 binds to the cytoplasmic side of RC47 and RCCII in 
the vicinity of Psb28 (Xiao et al. 2021; Zabret et al. 2021). It 

4002 | THE PLANT CELL 2024: 36; 3997–4013                                                                                                          Komenda et al.



has been suggested that Psb34 binds to the same binding site 
as Hlip heterodimers and so promotes detachment of Hlip 
heterodimers during the later stages of PSII formation 
(Rahimzadeh-Karvansara et al. 2022). In contrast the recently 
discovered Psb35 subunit binds to CP47mod and other PSII as-
sembly intermediates containing CP47mod, helping to stabil-
ize the binding of Hlips and increase the stability of these 
complexes in the dark (Pascual-Aznar et al. 2021).

Building the PSII core (RCCII)
Attachment of CP43mod to RC47 forms the RCCII complex. 
Free CP43mod, which consists of CP43 and small PSII subunits 
PsbZ, PsbK, and Psb30 (Boehm et al. 2011; Komenda et al. 
2012a; Fig. 2), is relatively abundant in membranes (Vermaas 
et al. 1988; Komenda et al. 2004) and, like CP47mod, probably 
contains its full complement of Chl and carotenoid cofactors 
(Boehm et al. 2011). The PsbK subunit is needed for stable at-
tachment of CP43mod to RC47 (Komenda et al. 2012b), but 
the role of PsbZ is unclear (Bishop et al. 2007); however, the 
tobacco PsbZ null mutant shows a lower level of PSII-LHCII 
supercomplex (Swiatek et al. 2001). The small PsbJ subunit 
(Fig. 1) has not been detected in the isolated CP43mod or 
RC47 complexes and might bind to RCCII late in assembly 
(Choo et al. 2022).

The CP43mod also associates with the Psb27 assembly fac-
tor (Nowaczyk et al. 2006), which binds to the large lumenal 
loop of CP43 (loop E) interconnecting TMHs 5 and 6 (Liu 
et al. 2011; Komenda et al. 2012b) and assists its attachment 
to RC47 (Komenda et al. 2012b). Psb27 folds into a robust 
4-helix bundle (Cormann et al. 2009; Mabbitt et al. 2009; 
Michoux et al. 2012; Xingxing et al. 2018), which may protect 
PSII from lumenal proteases (Komenda et al. 2012b).

Psb27 is associated with isolated PSII complexes that lack a 
functional Mn cluster (Nowaczyk et al. 2006; Roose and 
Pakrasi 2008). Recent cryo-EM structures suggest that bind-
ing of Psb27 to CP43 may impede binding of PsbO to main-
tain diffusional access of Ca2+ and Mn2+ ions into PSII to 
enable assembly of the Mn cluster (Huang et al. 2021, 
Zabret et al. 2021). However, there is little difference in the 
structures of inactive PSII with and without bound Psb27 
(Huang et al. 2021; Zhao 2023), so the role of Psb27 may 
be to inhibit assembly of the Mn cluster by constraining 
the conformational flexibility of the large lumenal loop of 
CP43 (Avramov et al. 2020; Tokano et al. 2020). Psb27 thus 
could stabilize a pool of “back-up” PSII complexes in the 
membrane that can be rapidly photoactivated following 
detachment of Psb27 (Komenda et al. 2012b), possibly dri-
ven by binding of CyanoQ, whose binding site overlaps that 
of Psb27 (Gisriel and Brudvig 2022). Recent ideas also sug-
gest that Psb27-containing complexes are subject to non- 
photochemical quenching of excitation energy to help 
prevent photodamage (Johnson et al. 2022).

Psb27 (Nowaczyk et al. 2006), like CyanoP (Ishikawa et al. 
2005), Ycf48 (Knoppová et al. 2021), and CyanoQ/PsbQ 
(Fagerlund and Eaton-Rye 2011), is a lipoprotein, which 

might help anchor PSII complexes in biogenesis regions via 
its lipid moiety, whereas the chloroplast homologues are 
not lipidated which may be related to differences in how 
and where PSII is assembled.

Although the binding sites and precise roles of Psb27 in 
chloroplasts remain to be determined, a tobacco Psb27 
homologue was recently detected in a novel monomeric 
PSII assembly intermediate containing the PSBS subunit 
(Fantuzzi et al. 2023), and Arabidopsis homologues have 
been implicated in PSII repair (Psb27-1, Chen et al. 2006) 
and the maturation of D1 (Psb27-2, Wei et al. 2010).

Assembly of the Mn cluster
Formation of oxygen-evolving PSII involves light-driven assem-
bly of the Mn4CaO5 cluster (in a process termed photoactiva-
tion) and subsequent attachment of the lumenal extrinsic 
subunits, which shield the active cluster. Early studies in 
Synechocystis suggested that the tetratricopeptide PratA pro-
tein present in the periplasm was involved in pre-loading D1 
with Mn early in assembly before the RCCII is formed 
(Stengel et al. 2012). However, this now seems unlikely given 
the recent structure of the Ycf48-binding site in PSII, which 
prevents binding of Mn to mature and precursor forms of 
D1 (Zhao et al. 2023). It is therefore more likely that Mn binds 
to PSII later in the assembly process after release of Ycf48 and 
after formation of RCCII, when the full complement of 
amino-acid ligands to the cluster are available.

The photoactivation process is known to consist of light- 
dependent and light-independent events (Bao and Burnap 
2016), but the molecular details remain unclear. The first 
step is the light-driven oxidation of a single Mn2+ ion bound 
at a high-affinity binding site within D1 (Diner and Nixon 
1992; Nixon and Diner 1992) close to Yz, the immediate oxi-
dant of the cluster. Recent cryo-EM structures of PSII com-
plexes lacking the intact cluster have provided hints on the 
location of this Mn2+ ion in both cyanobacterial (Zabret 
et al. 2021) and plant complexes (Graça et al. 2021). The 
C-terminal tails of D1 and D2 are difficult to model in PSII 
structures lacking the Mn cluster, suggesting a high degree 
of flexibility (Gisriel et al 2020; Huang et al. 2021; Zabret 
et al. 2021; Zhao et al. 2023). It is likely that assembly of 
the Mn cluster is coupled to local conformational changes 
in D1 so that residues in the D1 tail and CP43 correctly ligate 
the cluster. These structural changes then trigger reorienta-
tion of the D2 C-terminal tail and the lumenal loop of 
CP43 to permit binding of PsbO and the other extrinsic pro-
teins to the lumenal surface of PSII to bind and seal off the 
Mn cluster (Zhao 2023).

Cyanobacterial oxygen-evolving PSII exists in the form of 
both a dimer and monomer, although the isolated dimer is 
more active than the monomer (Nowaczyk et al. 2006). It 
has been assumed that the oxygen-evolving PSII dimer is as-
sembled from active PSII monomers. However, recent 
cryo-EM analyses have revealed that isolated dimeric PSII 
complexes are heterogeneous (Huang et al. 2021; Lambertz 
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et al. 2023; Zhao 2023). Besides fully assembled active dimers, 
PSII complexes can be found as inactive dimers and semi- 
active dimers with just 1 of the 2 complexes containing an 
assembled cluster (Zhao 2023), and dimers with Psb27 
bound to 1 or both complexes (Lambertz et al. 2023). 
Thus, assembly of the Mn cluster appears to occur by parallel 
pathways involving both monomeric and dimeric complexes.

PSII is a mosaic of new and recycled 
components formed during cycles of 
disassembly and assembly
PSII is a weak link in photosynthesis due to its vulnerability to 
light-induced irreversible damage caused by the production of 
reactive oxygen species (ROS) in PSII and by the reactivity of 
highly oxidizing species needed to drive the oxidation of water 
(Diner and Rappaport 2002; Pospíšil 2009). Photodamage is an 
inevitable intrinsic feature of the complex and several “donor” 
and “acceptor” side mechanisms have been proposed depend-
ing on the site of primary impairment (for review, see Vass 
2012). Although there is no general agreement on which 
mechanism prevails in nature, all involve formation of highly 
oxidizing species that irreversibly damage protein and co- 
factors within PSII.

Specific adaptations have been discovered that increase 
the intrinsic resistance of PSII from damage. These include 
synthesis of a specific form of cyanobacterial D1 in high light 
that contains a Glu residue rather than a Gln in the vicinity of 
the photoactive Pheo that reduces the production of singlet 

oxygen via charge recombination (Vass 2011). In the case of 
the extremely light-resistant alga Chlorella ohadii, an add-
itional protein binds close to the QB-binding site in 
oxygen-evolving PSII, possibly to reduce oxidative damage 
(Fadeeva et al. 2023). Whether expression of this protein 
will confer photoprotection in other organisms is unknown.

Once damaged, rather than resynthesize PSII de novo, 
complexes are “repaired” by selectively degrading the da-
maged subunit, replacing it by a newly synthesized subunit 
and recycling the undamaged components (Fig. 4). D1 is pref-
erentially inactivated because it binds most of the co-factors 
that cause damage through oxidative side-reactions (Ferreira 
et al. 2004) and is the subunit that is replaced most often dur-
ing so-called rapid D1 turnover. Under stress conditions, not 
only D1 but also D2, CP43, and finally CP47 are irreversibly 
damaged and replaced (Komenda and Masojídek 1995; 
Jansen et al. 1999; Yao et al. 2012). Thus, it is now clear 
that PSII repair is a much broader concept and can include 
the replacement of 1 (D1), 2 (D1, D2), 3 (D1, D2 and 
CP43), or more PSII subunits while the remaining “undam-
aged” subunits are recycled (see Fig. 4).

As D1 lies at the heart of the PSII complex, replacement re-
quires partial detachment of the CP43mod to allow the fast 
degradation of the damaged D1 copy and insertion of a 
new version. Although replacement of D1 is widely assumed 
to take place in the RC47 complex, it cannot be totally ex-
cluded that damaged PSII disassembles into the individual 
modules (CP47mod, D2mod, CP43mod, and damaged D1mod) 
and then rapidly reassembled using a newly synthesized 
D1mod similar to that seen for de novo assembly. The recent 

Figure 4. Scheme for PSII repair. The dimeric PSII inactivated by light is partially disassembled and can be promptly repaired by detachment of 
CP43mod, fast FtsH-mediated D1 degradation, D1 synthesis, and reassembly of the active dimeric PSII (Fast repair, upper box). Under harsh oxidative 
stress when fast repair cannot cope with the high rate of oxidative inactivation, other PSII subunits are also oxidized by ROS and their replacement 
and reassembly into the active dimeric PSII is also needed (Slow repair, lower part of the scheme).
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suggestion that PSII repair may involve a novel CP47mod/ 
CP43mod complex lacking the RCII complex (Weisz et al. 
2019) remains highly controversial (Bečková et al. 2022).

Since the incorporation of newly synthesized D1 into RC47 
is extremely fast, the co-translational incorporation of D1 
into RC47 was originally proposed (Zhang et al. 1999). 
Given the known structure of the heterodimeric D1/D2 com-
plex (Fig. 1) and assuming sequential insertion of D1 helices 
into the membrane, only the last 2 TMHs (IV and V) of D1 
(Fig. 1) will potentially interact co-translationally with the 
corresponding helices of D2.

Currently it is far from clear what triggers disassembly of da-
maged PSII. Early studies using isolated chloroplast thylakoids 
(Adir et al. 1990; Barbato et al. 1992) or cyanobacterial cells 
with inhibited protein synthesis (Komenda and Masojídek 
1995) suggested that monomerization of dimeric PSII preceded 
D1 degradation (Fig. 4). The interface between PSII monomers 
contains a belt of lipid molecules that is important for dimer 
stability (Guskov et al. 2009). Activation of a lipase, which 
would cleave these lipids, could potentially induce monomer-
ization and indeed a PSII-associated lipase, LipA, has recently 
been implicated in D1 degradation in Synechocystis (Jimbo 
and Wada 2023). This lipase could also be involved in the de-
tachment of CP43, since a lipid layer is also located between 
CP43 and D1 within PSII (Guskov et al. 2009). In addition, oxi-
dative damage to PSII, such as to a bound cofactor, lipid or pro-
tein side-chain damage, may weaken the binding of CP43mod to 
RC47. Indeed, recent work has identified an important role for 
an oxidized Trp residue in the N-terminal tail of D1 in the de-
tachment of CP43 (Kato et al. 2023).

On the other hand, additional auxiliary proteins may interact 
with RCCII to facilitate controlled disassembly and repair and so 
minimize the production of ROS from damaged complexes, 
which would otherwise inhibit protein synthesis (Nishiyama 
et al. 2001). This is especially important in eukaryotes, where da-
maged complexes migrate laterally in membranes to sites of 
protein synthesis/degradation (Puthiyaveetil et al. 2014). A pos-
sible Chlamydomonas PSII “repair” complex has recently been 
isolated and characterized by cryo-EM (Liu et al. 2023). The com-
plex contains 3 additional, previously unidentified protein fac-
tors that participate in the detachment of PsbO and the CP29 
antenna and blockage of the QB site. In chloroplasts, the phos-
phorylation of PSII core subunits (CP43, D2, D1, PsbH) is widely 
assumed to regulate PSII disassembly. However, these conclu-
sions have relied heavily on the analysis of kinase and phosphat-
ase knockout mutants that may have impacts outside PSII 
(Longoni and Goldschmidt-Clermont 2021).

Proteases involved in PSII repair
The main players involved in degrading damaged PSII subunits 
belong to the FtsH family of ATP-dependent membrane- 
embedded metalloproteases (Yi et al. 2022). Synechocystis, like 
most cyanobacteria, encodes 4 different FtsH subunits, with a 
heterohexameric complex of SynFtsH2 and SynFtsH3 (the 
FtsH2/3 complex) responsible for selective degradation of D1 

(Silva et al. 2003; Boehm et al. 2012a) and for removal of mutated 
proteins and assembly intermediates (Komenda et al. 2006). For 
D1, the proposed mechanism involves recognition of the 
N-terminal tail of damaged D1 by the FtsH protease complex 
and subsequent processive degradation (Nixon et al. 2005; 
Komenda et al. 2007b).

From a phylogenetic viewpoint, FtsH2 (a type-B subunit) 
and FtsH3 (a type-A subunit) emerged early in the evolution 
of oxygenic photosynthesis (Shao et al. 2018). The corre-
sponding homologues in algae and plants appear to fulfil 
the same role as SynFtsH2/3 (Sakamoto et al. 2003; Malnoë 
et al. 2014). The FtsH2/3 complex also co-purifies with pre-
parations of D2mod and RCII from Synechocystis (Knoppová 
et al. 2022), which supports a role in the degradation of 
both D1 and D2 within RCII (Krynická et al. 2015). The 
FtsH2/3 complex also interacts with prohibitin, a member 
of the band 7 protein family, which might regulate FtsH ac-
tivity (Boehm et al. 2009; Boehm et al. 2012a).

Accumulation of the FtsH2/3 protease complex in 
Synechocystis is dependent on the Psb29 subunit, which was ori-
ginally identified as a PSII assembly factor (Kashino et al. 2002). 
Psb29 interacts directly with FtsH, but it remains unclear 
whether it is involved in assembly or stabilization of FtsH com-
plexes (Bečková et al. 2017b). The plant homologue of Psb29, 
termed Thylakoid Formation 1, THF1 (Keren et al. 2005), is ex-
pected to play a similar role in chloroplasts (Bečková et al. 
2017b). The Chlamydomonas CrFtsH1/2 complex exhibits in-
creased turnover in the light (Wang et al. 2017a), with accumu-
lation dependent on the peptidyl-prolyl cis-trans isomerization 
activity of immunophilin CYN28 (Fu et al. 2023); in Arabidopsis, 
FtsH turnover requires the EngA GTPase, which suggests a pos-
sible role for phosphorylation in FtsH action (Kato et al. 2018).

By contrast, the homo-oligomeric SynFtsH4 complex, 
which is also found in Synechocystis thylakoids, is not in-
volved in the degradation of damaged PSII subunits; rather, 
it controls the level of Hlips and possibly other PSII assembly 
factors (Krynická et al. 2023). What determines the substrate 
specificity of FtsH complexes remains unknown.

Selective D1 degradation in cyanobacteria is synchronized 
with the synthesis of D1 so that when the D1 subunit is not 
available the degradation of damaged D1 is postponed and is 
closely followed by degradation of D2 (Komenda and Barber 
1995; Mulo et al. 1997; Komenda et al. 2000; Masuda et al. 
2023). The mechanism for this synchronization is unclear 
but might reflect the degradation of damaged D1 by FtsH at-
tached to the Sec translocon (Yu et al. 2018).

The second group of proteases involved in the degrad-
ation of PSII components, especially D1, in chloroplasts 
are the Deg serine proteases, which are located in both 
the stroma and lumen and are considered as back-up 
proteases that cleave exposed loops of D1 and, possibly, 
other proteins to enhance FtsH-mediated degradation 
(Kato and Sakamoto 2009). Although important for confer-
ring resistance to light stress, the Synechocystis Deg pro-
teases do not play an important role in D1 degradation 
(Barker et al. 2006).
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Chl biosynthesis and delivery to PSII 
during biogenesis
As already noted, unbound Chl is phototoxic and synthesis of 
Chl-binding proteins needs to be strictly synchronized with 
Chl biosynthesis and organized in a way to prevent leakage 
of Chl molecules into the membrane. The terminal enzyme 
of the Chl biosynthesis pathway, Chl synthase, is associated 
with the YidC insertase in cyanobacteria (Chidgey et al. 
2014) and possibly in plants (Proctor et al. 2018), which 
has led to speculation that the Chl biosynthesis enzymes 
are organized close to the translocon (Sobotka 2014) and 
that newly formed Chl passes directly from the Chl synthase 
to the nascent polypeptide chain (Chidgey et al. 2014) in a 
co-translational mechanism, as suggested from early studies 
(Eichacker et al. 1990; Mullet et al. 1990). However, some 
Chls are now known to be bound at the interface of two sub-
units in photosynthetic complexes suggesting some post- 
translational binding of Chl. Also, analysis of purified D1mod 

and D2mod indicates that at least some Chl molecules are in-
serted after the folding and formation of modules (Knoppová 
et al. 2022). Nonetheless, it is likely that this post- 
translational Chl insertion still occurs in close vicinity of 
the translocon (and Chl synthase), where a limited pool of 
free Chl might be present. Its toxicity could be mitigated 
by Hlips and a high concentration of carotenoids. The stable 
assembly of D1 and D2 into the RCII complex requires Chl 
(Knoppová et al. 2022) with insertion facilitated by Ycf48 
(Yu et al. 2018). The fact that this assembly factor can be 
co-isolated with YidC (Yu et al. 2018) supports the preload-
ing of D1mod and D2mod with pigments on the periphery of 
the translocon.

Analysis of a wide range of PSII assembly mutants suggests 
that Chl biosynthesis is dependent on the ongoing assembly 
of PSII in cyanobacteria (Bečková et al. 2017a; Yu et al. 2018; 
Kiss et al. 2019) and chloroplasts (Plücken et al. 2002; 
García-Cerdán et al. 2019; Che et al. 2022). These mutants 
are PSI deficient, which appears to be a consequence of such 
regulation. Possibly, PSII assembly intermediates may interact 
with Chl biosynthesis enzymes, stabilize them and channel 
new Chl into newly synthesized Chl-binding proteins. This hy-
pothesis is supported by detection of Mg-protoporphyrin IX 
monomethylester cyclase in RC47 and/or RCCII assembly inter-
mediates containing Psb28 (Dobáková et al. 2009) but needs 
further support.

Importantly, the lifetime of Chl exceeds that of individual 
PSII Chl-binding proteins, and hence Chl is recycled (Yao 
et al. 2012). As yet, the Chl-binding proteins involved in 
this process remain unknown. D1, D2, and partly CP43 are 
synthesized in Synechocystis even when de novo Chl biosyn-
thesis is inhibited, suggesting that they can utilize previously 
synthesized Chl molecules released from other Chl-binding 
proteins (Kopečná et al. 2013; Hollingshead et al. 2016). By 
contrast, synthesis of CP47 and formation of PSI trimers 
are dependent on the sufficient supply of new Chl occurring 
under optimal growth conditions when fast cell proliferation 

occurs (Kopečná et al. 2012). This would indicate that PSI 
monomers need additional Chls to trimerize, and that this 
Chl could then be released upon monomerization.

A possible role for PSI in PSII biogenesis
The recent co-isolation of PSII assembly modules and assem-
bly intermediates with PSI complexes has provided biochem-
ical evidence for the possible involvement of PSI in PSII 
biogenesis (Fig. 3). Affinity purification of various PSII assem-
bly intermediates and PSI complexes has led to the isolation 
of CP43mod (Fig. 3; Komenda et al. 2012b; Kopečná et al. 2015; 
Strašková et al. 2018) and RC47 (Kiss et al. 2019; 
Pascual-Aznar et al. 2021) complexes bound to monomeric 
PSI complexes as well as CP47mod and RCCII bound to trimer-
ic PSI (Bečková et al. 2017a; Pascual-Aznar et al. 2021). 
Although more work is needed to confirm the structure 
and physiological relevance of these complexes (Zhao et al. 
2023), these results suggest that the biogenesis pathways of 
PSI and PSII may be intertwined (Fig. 3). This is further sup-
ported by findings that some assembly factors like Psb27 
(Komenda et al. 2012b), Ycf48 (Yu et al. 2018), and Psb35 
(Pascual-Aznar et al. 2021) seem to be shared by both PSI 
and PSII. PSI may therefore play a role as a scaffold that tran-
siently binds PSII assembly modules and intermediates to 
supply them with its own weakly bound Chl molecules and 
photoprotect them by dissipating excess light energy via ex-
citation energy transfer (or “spill-over”) to PSI (Bečková et al. 
2017a; Strašková et al. 2018; Fig. 3).

Future outlook
Thanks to the dramatic progress in structural biology, espe-
cially cryo-EM, we are entering an era where structures of 
low-abundance complexes involved in PSII assembly and re-
pair can be rapidly determined. A combination of affinity 
purification of tagged complexes from WT and mutants 
and cryo-EM will allow us to address the binding sites and 
possible functions of the many accessory factors so far impli-
cated in PSII biogenesis (see Johnson and Pakrasi 2022 for re-
cent list). Some of these are specific for cyanobacteria or 
chloroplasts and probably reflect specific adaptations.

Key questions to address in the future include how Chl is 
handled during the synthesis of Chl-binding proteins and dur-
ing degradation of damaged PSII subunits and how the 
Mn4CaO5 cluster is assembled in PSII during the process of 
photoactivation. In terms of PSII repair, cryo-EM analysis com-
bined with mass spectrometry of PSII complexes isolated from 
cells at various stages of photodamage will reveal insights into 
the modifications and accompanying structural changes that 
occur to trigger selective D1 degradation. So far work in this 
area has been restricted to identifying sites of damage in iso-
lated PSII complexes (Kale et al. 2017). Ultimately, it might 
even be possible to obtain snapshots of PSII complexes under-
going assembly/repair in situ using advanced cryo-tomography 
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techniques as recently applied in the red alga Porphyridium 
purpureum (You et al. 2023) to study PSI/PSII megacomplexes. 
Ultimately, fundamental knowledge in this area might be 
exploited to improve the efficiency of PSII assembly and repair, 
especially under abiotic stress conditions, to increase biomass 
yields.
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