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Abstract 

Background Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphy‑
letic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity 
of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine 
environments, relatively little is still known about their community structure and ecology at fine‑scale taxonomic reso‑
lution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composi‑
tion in the Adriatic Sea.

Results Analysis was based on pufM gene metabarcoding and quantitative FISH‑IR approach with the use of artificial 
neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abun‑
dances in spring 2.136 ± 0.081 ×  104 cells  mL−1, minimum in summer 0.86 ×  104 cells  mL−1), FISH‑IR groups (Roseobacter 
clade prevalent in autumn, other Alpha‑ and Gammaproteobacteria in summer) and pufM sequencing data agglom‑
erated at genus‑level. FISH‑IR results revealed heterogeneity with the highest average relative contribution of AAPs 
assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria 
(31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade 
NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. 
The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bac‑
teria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abi‑
otic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, 
and orthophosphate concentration). A type of neural network, neural gas analysis at order‑, genus‑ and ASV‑level, 
resulted in five distinct best matching units (representing particular environments) and revealed that high diversity 
was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially 
dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton.

Conclusion This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adri‑
atic Sea on a trophic gradient during a year‑round period. This study is also one of the first reports of their genus‑
level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, 
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Background
Aerobic anoxygenic phototrophs (AAPs) are a polyphyl-
etic group of bacteria capable of photoheterotrophy. They 
are omnipresent in diverse habitats, and were discovered 
in the 1970s [1]. In recent decades, they have been rec-
ognised as an important functional group of particular 
interest in microbial ecology, and extensive studies have 
been conducted on this topic [2–10]. AAPs are consid-
ered ubiquitous in the marine environment with first 
quantitative estimates of their abundances up to 11% of 
the total microbial community in the upper open ocean 
[3]. A recent study reports their record abundance in the 
Adriatic Sea with up to 30% of the bacterial population 
in the piconeuston community following open fire events 
[11].

AAPs are facultative photoheterotrophs that harvest 
light energy and generate ATP by photophosphoryla-
tion using a unique type of bacteriochlorophyll-a-con-
taining reaction center. Nevertheless, they primarily rely 
on dissolved organic matter as an energy source [12]. 
They exhibit higher growth rates and larger cell volumes 
compared to other bacterioplankton, making them par-
ticularly vulnerable to predation [13–16]. Hence, their 
contribution to the transformation of both organic and 
inorganic matter in aquatic environments is substantial 
[5, 8, 10, 17]. Ecology of AAPs in different ecosystems is 
rather complex, not yet fully understood, and influenced 
by a plethora of factors, such as temperature, salinity, 
nutrient availability, light intensity, and the presence of 
predators [5, 7, 9, 14, 16]. Furthermore, the abundance 
and distribution of AAPs has been shown to vary signifi-
cantly on a spatiotemporal scale with distinct seasonality 
and could be regulated by ocean circulation patterns and 
seasonal changes in sunlight availability [5, 9].

Based on the metagenomic approach and metabarcod-
ing of the pufM gene, marine AAPs are so far taxonomi-
cally classified into the proteobacterial classes Alpha- and 
Gammaproteobacteria [5, 18, 19]. Sequencing amplicons 
of the pufM gene, encoding the M-chain of the photo-
synthetic reaction centre complex, is currently the most 
common approach in the investigation of their ecology. 
This preference stems from the realisation that metagen-
omic approach may overlook certain groups that occur at 
very low abundances [5]. In comparison with sequencing-
based methodologies which do not provide quantitative 
estimates of specific taxa [20], infrared epifluorescence 
microscopy combined with fluorescence in  situ hybridi-
sation (FISH-IR) aims for quantification of specific AAP 

groups [21]. Therefore, a combination of qualitative and 
quantitative methodologies is required for a comprehen-
sive analysis.

Even though various studies have been conducted 
over the years on the topic of AAP abundance, distribu-
tion, ecology, and dynamics [11, 22–25], their commu-
nity composition remains unknown in the Adriatic Sea. 
Hence, here we present the first comprehensive analysis 
of this community in the Adriatic Sea along a trophic 
gradient during a year-round period. This study: (i) elu-
cidates patterns of AAP distribution and community 
composition based on pufM metabarcoding in the cen-
tral Adriatic, (ii) quantifies abundances of the main AAP 
groups with FISH-IR, (iii) reveals biotic and abiotic envi-
ronmental factors potentially affecting AAPs on a fine-
scale taxonomic resolution using a neural gas algorithm, 
ultimately broadening our knowledge of their composi-
tion and ecology.

Methods
Study area, environmental parameters and plankton 
analysis
A total of 90 samples (Additional file  1: Table  S1) were 
collected on board the R/V BIOS DVA, predominantly 
on a monthly basis (with the exception of July, Septem-
ber and October) from February 2021 to January 2022 on 
vertical profiles at three stations in the central Adriatic 
Sea: the coastal area ST101 (0 m and 35 m depths), the 
channel CJ007 (0 m, 30 m and 50 m depths) and the open 
sea CJ009 [0 m, 30 m, 50 m, 75 m, 100 m and deep chlo-
rophyll maximum (dChlMax) depths] (Fig. 1).

Seasons were determined according to the criteria of 
a comprehensive historical hydrographic dataset of the 
Adriatic Sea, with the months January to April being 
considered winter, May and June spring, July to Octo-
ber summer and November and December autumn 
[26]. Temperature, salinity, nutrients concentrations and 
chlorophyll a (Chl a) were measured as described in a 
previous study [27] and values are shown in Fig. 2. Abun-
dances of picoplankton community members, namely 
Synechococcus and Prochlorococcus, picoeukaryotes (PE), 
heterotrophic bacteria, high and low nucleic acid bacteria 
(HNA and LNA bacteria, respectively) and heterotrophic 
nanoflagellates (HNF), were measured by flow cytometry 
as previously described [27]. Bacterial production was 
estimated by the 3H-thymidine incorporation method as 
previously described [28].

paving the way for further research of substantial contribution of this important bacterial functional group to marine 
ecosystems.
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Aerobic anoxygenic phototrophs (AAPs) abundance
Seawater samples for epifluorescent microscopy were 
collected using a Niskin bottle (5 L). After immediate 
fixation of 50  mL aliquotes with formaldehyde (pH 7.5, 
final concentration (f. c.) 2%) for 1  h at room tempera-
ture or overnight at 4 °C, samples were filtered on white 
0.2  µm polycarbonate filters (47  mm diameter, What-
man® Nuclepore™ Track-Etched, Merck) and, after dry-
ing, stained with 4’,6-diamidino-2-phenylindole (DAPI, f. 
c. 1 μgmL−1) using a 3:1 mixture of Citifluor™ AF1 and 
Vectashield® [29]. AAP bacteria were counted using an 
Olympus BX51 microscope equipped with an Olympus 
UPlanSApo 100 × /1.40 OIL, infra-red (IR) objective, a 
U-LH100H6 Hg lamp for excitation and image analysis 
software (CellSens). Images were taken with an XM10- 
IR camera (Olympus). Due to the rapid fading of the 
bacteriochlorophyll-a (Bchl a) autofluorescence, three 
epifluorescent filter sets were applied in a specific order: 
IR, DAPI and Chl a. The Chl a signal was subtracted 
from IR to obtain a net count of AAP cells.

Infrared epifluorescence microscopy and fluorescence 
in situ hybridisation (FISH‑IR)
A combination of two epifluorescence-based methods, 
infrared epifluorescence microscopy and fluorescence 

in situ hybridisation (FISH-IR) was applied to simultane-
ously detect infrared and probe signals, as described pre-
viously [21, 29, 30]. Probes targeting Alphaproteobacteria 
(probe ALF968), Gammaproteobacteria (probe GAM42a 
and unlabelled Bet42a competitor) and the Roseobacter 
clade (probe ROS537) were used. For detailed protocol, 
please see Additional file 2: Methods.

DNA extraction, pufM amplification, and Illumina amplicon 
sequencing
Seawater for DNA analyses was collected using a Niskin 
bottle (5 L), pre-filtered through a 20-µm plankton net 
and 1–2 L were immediately vacuum filtered on board 
through 0.22-µm polyethersulfone membrane filters 
(PES, 47  mm diameter, FiltraTECH, France). One liter 
of Milli-Q water represented a negative filtration con-
trol. Filters were frozen in liquid nitrogen and stored at 
− 80 °C until further analyses. A modified DNeasy Power-
Water kit (QIAGEN, The Netherlands) with an enhanced 
bead-beating step was used for DNA extraction [31]. 
Negative control (extraction blank) included empty 0.22-
µm polyethersulfone membrane filter (PES, 47 mm diam-
eter, FiltraTECH, France). Briefly, PES filters were cut in 
half with a sterilised scalpel and cut into smaller pieces, 
placed in 1.5 mL tubes filled with ceramic beads (MagNA 

Fig. 1 Study area of the central Adriatic Sea with sampling stations ST101, CJ007 and CJ009
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Fig. 2 Abiotic variables (temperature‑Temp, salinity‑Sal, nitrate‑  NO3
−, nitrite‑  NO2

−, ammonium ion‑  NH4
+, dissolved inorganic nitrogen‑DIN, total 

nitrogen‑NTOT, orthophosphate‑  PO4
3−, total phosphorus‑PTOT, silicate‑  SiO4

2−) with absolute abundances of total heterotrophic bacteria (UHB) 
and aerobic anoxygenic phototrophs (AAPs) shown per station, month and depth
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Lyser Green Beads, Roche, Switzerland), followed by 
rigorous homogenisation with the MagNALyser instru-
ment, twice for 20 s at 9000 RCF. After homogenisation, 
the tubes were centrifuged at 5600 RCF for 1  min. The 
supernatant was transferred to a clean collection tube 
and the protocol was performed according to the man-
ufacturer’s instructions from step 8 in the Quick Start 
Protocol. The DNA was finally eluted in 35 µL of the EB 
solution. Total extracted DNA was quantified and A260/
A280 and A260/A230 absorbance ratios were measured 
using DS -11 spectrophotometer (Denovix, USA). Nega-
tive filtration and extraction controls showed DNA con-
centrations below the limit of detection. To analyse the 
composition of the AAP community, amplification of 
pufM gene (~ 204  bp) was performed with pufM_UniF 
(5′-GGNAAYYTNTWY TAY AAYCCNTTYCA) and 
pufM_WAW (5′-AYNGCR AAC CACCANGCCCA) 
primers [16, 32, 33]. All samples were amplified in trip-
licate, with 25 µL of reaction mix each containing 12.5 
µL of Q5® High-Fidelity 2X Master Mix (New England 
Biolabs, USA), 1.25 µL of each primer at a final concen-
tration of 0.5 µM, 2 µL of DNA template (10 ng/µL, final 
mass of DNA template in PCR reaction 20 ng) and 8 µL 
of sterile, nuclease-free water. Cycling conditions were 
as follows: initial denaturation at 98 °C for 30 s, followed 
by 35 cycles of amplification at 98  °C for 7  s, 58  °C for 
30 s and 72  °C for 30 s, with 2 min of final extension at 
72 °C (T100 thermal cycler, Biorad, USA). The triplicates 
were purified from the agarose gel (2.0%) and pooled 
using the Wizzard SV Gel and PCR Clean-Up System 
(Promega, USA) according to the manufacturer’s instruc-
tions and then quantified using the DS -11 spectropho-
tometer (Denovix, USA). All filtration/extraction blanks 
and PCR non-template controls were negative. All DNA 
extractions and PCR amplifications were performed in 
the same laboratory by the same person. Library prepa-
ration and amplicon pair-end sequencing (2 × 250 bp) on 
the Illumina MiSeq were performed by the Genomics 
Core Facility of the Universitat Pompeu Fabra, Barcelona, 
Spain.

Bioinformatics, phylogenetic placement and calculation 
of diversity and evenness
A total of 7,823,083 input reads from Illumina Miseq 
were used for the bioinformatic analyses. The ini-
tial counts per sample are given in Additional file  1: 
Table  S2. The quality of raw forward and reverse 
reads was assessed with FastQC v0.11.9. Primers were 
trimmed using cutadapt v4.1 [34]. Subsequent data 
processing was performed with the statistical software 
R v4.0.2 (https:// cran.r- proje ct. org/) using the R pack-
age DADA2 v1.16.0 [35]. Briefly, filterAndTrim func-
tion (truncLen = c(200, 200), maxN = 0, maxEE = c (2, 

2), truncQ = 2, rm.phix = TRUE) removed low quality 
sequences and sequence tails. After error learning and 
sample inference algorithm, the paired-end reads were 
merged, resulting in the amplicon sequence variant 
(ASV) table. The removeBimeraDenovo function with 
"pooled" method discarded chimeras that accounted for 
5.8% of the merged sequence reads. The naive Bayesian 
classification method [36] was used to assign taxonomy 
with the assignTaxonomy function based on the manu-
ally curated database, the most complete for AAPs to 
date [6].

Due to the high proportion of reads unclassified at 
genus level in the taxonomic assignment using DADA2, 
as high as 50% in some samples, a phylogenetic analy-
sis was performed. ASVs occurring less than 2 times in 
at least 5% of samples and samples with an unaccept-
ably low final number of reads per sample (N < 2000) 
were excluded from further analysis using the R pack-
age phyloseq v1.32.0 [37], resulting in 663 unique ASVs 
(number of reads per sample: median 58,227, min 2,039, 
max 32,5210) in 81 samples. The 663 ASVs were aligned 
using MAFFT [38] and 2 ASVs that poorly aligned were 
removed and further analysis was performed using 661 
ASVs. A database of 3363 pufM sequences and their tax-
onomic assignment [6] was used for taxonomic assign-
ment of the ASVs. ASVs were placed in the pufM gene 
phylogenetic tree [6] using the Evolutionary Placement 
Algorithm v0.3.5 [39] and Gappa [40] handled the taxo-
nomic assignment of ASVs according to their position in 
the phylogenetic pufM tree with a consensus threshold 
higher than 50%. Sample data, untransformed final ASV 
matrix, taxonomy and reference pufM sequences (refseq) 
are given in Additional file  3. Since most of the initial 
pufM phylogroups [41] have already been assigned to a 
standard phylogenetic taxonomy [19], just the Rhodobac-
terales ASVs which could potentially belong to distinct 
pufM phylogroups E, F or G were aligned with phylo-
group sequences using MAFFT [38]. A phylogenetic tree 
was built using FastTree [42] to obtain phylogroup affili-
ation or to facilitate the comparison with previous publi-
cations that used phylogroup taxonomic affiliation [5, 19, 
41].

The R package ggplot2 v3.3.5 [43] was used to graphi-
cally visualize the composition of the AAP community 
in terms of relative abundances of a given taxon at class, 
order and genus levels. For agglomeration of ASVs to a 
certain taxonomic rank (order or genus); function tax_
glom from R package phyloseq v1.32.0 was used. Since 
microbiome count data is of a compositional nature and 
should be treated as such [20, 44, 45], centered log-ratio 
(CLR) transformation [46] was performed using function 
transform from R package microbiome v1.10.0 [47], with 
introduced pseudo-counts (minimum relative abundance 

https://cran.r-project.org/
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divided by two) instead of zeros in ASV table before the 
transformation.

In order to account for significant discrepancies in 
read counts between samples, rarefying (i.e. random 
subsample of reads to equalise read depth) was used 
exclusively to estimate the diversity metrics. Rarefying 
to the smallest library size multiple times (function rar-
efy_even_depth from phyloseq v1.32.0 R package, rarefy-
ing threshold = 2000, N(times) = 100) was applied on the 
ASV matrix to estimate alpha diversity metrics calculated 
as mean values of multiple subsample calculations: the 
observed number of ASVs, Shannon’s (H’) and Pielou’s 
(J’) indices calculated with vegan v2.5.7 R package [48]. 
Rarefaction curve exhibiting sufficient sequencing depth 
for diversity estimates is given in Additional file 1: Fig. S1.

Statistical analyses and neural gas algorithms
Correlations between abiotic environmental variables 
were assessed using correlational (Draftsman) plots in 
PRIMER7 to estimate if a certain variable should be 
excluded in the case of a strong correlation (Additional 
file 1: Fig. S2). No variables were excluded from further 
analysis.

To assess whether there are differences in the spati-
otemporal patterns of the AAP community, permuta-
tional multivariate analysis of variance (PERMANOVA) 
based on Aitchison distances (Euclidean distances on 
CLR transformed dataset) was performed on the pufM 
dataset in PRIMER7 software, with ’season’ and ’region’ 
as fixed factors and ’layer’ as a random factor nested in 
’region’ (9999 permutations, sums of squares type: type 
II (conditional), permutation method: Unrestricted per-
mutation of raw data) [49, 50]. Factor layer was defined 
as L1 (0–30  m), L2 (30–50  m), L3 (50–75  m) and L4 
(75–100  m). Accompanying PERMANOVA, distance-
based test for homogeneity of multivariate dispersions 
(PERMDISP) was performed on the same transformed 
dataset (9999 permutations, deviations from centroid). 
A significant result of PERMDISP would indicate that 
groups differ in dispersion [51]. Variance-based compo-
sitional principal component (PCA) biplot on Aitchison 
distances was generated based on genus-level agglomer-
ated and CLR-transformed values with zero replacement 
using pseudo-counts with the R package microViz v0.10 
[52].

AAP absolute and relative abundance data as well 
as FISH-IR microscopic counts given as relative abun-
dances were square root transformed. Non-metric 
multidimensional scaling (nMDS) ordination plot 
based on Bray–Curtis distances was constructed to 
visualise differences in seasonal abundances for FISH-
IR groups, followed by PERMANOVA to test the sig-
nificance of observed differences (9999 permutations, 

sums-of-squares type: type II (conditional), permuta-
tion method: Unrestricted permutation of raw data). 
PERMDISP (9999 permutations, deviations from cen-
troid) was performed accompanying PERMANOVA 
on the same transformed dataset. To assess agreement 
between metabarcoding and FISH-IR data, Spearman 
correlation coefficients and their statistical significance 
were calculated between FISH-IR probe counts and 
corresponding pseudoabundances from pufM sequenc-
ing (i.e. relative abundance of Gammaproteobacteria 
class × AAP absolute number/100) using cor.test func-
tion from R package stats v.3.6.2 (Additional file 4).

An artificial neural network/unsupervised topology 
learning algorithm, neural gas (NG), was applied to a 
CLR-transformed pufM dataset to estimate charac-
teristic AAP patterns associated with specific biotic/
abiotic environmental factors [53]. NG has been suc-
cessfully used for this type of data in previous studies 
due to its suitability for modelling anomalies and the 
mean distribution of microbiological parameters [25, 
27, 54]. In our study, separate NG models were created 
on agglomerated and CLR-transformed datasets on 
pufM sequencing data, carried out at the order-, genus- 
and ASV-levels. NG models used the pufM sequencing 
data for quantifying data space to generate "best-match 
units" (BMUs). For all models, the ecological factors 
(biotic: heterotrophic bacteria-UHB, High nucleic acid 
bacteria-HIGH, Synechococcus-SYN, Prochlorococcus-
PROCHL, picoeukaryotes-PE, bacterial production-BP, 
hetrotrophic nanoflagellates-HNF, aerobic anoxygenic 
phototrophs-AAP; and abiotic: temperature-Temp, 
salinity-Sal, nitrates-NO3

−, nitrites-NO2
−, ammonium 

ion-NH4
+, dissolved inorganic nitrogen-DIN, total 

nitrogen-NTOT, soluble reactive phosphorus-SRP, 
total phosphorus-PTOT, silicate-SiO4

2−, Chlorophyll a-
Chl a) were calculated as average values for a specific 
BMU. All models resulted in five characteristic distri-
butions (BMUs). The models were initialised by setting 
the number of training epochs to 1000, the initial step 
size to 0.5 and the initial decay constant to 4.5 using 
SOM Toolbox version 2.0 for MATLAB (E. Alhoniemi, 
J. Himberg, J. Parhankangas and J. Vesanto, Helsinki 
University of Technology, Finland: http:// www. cis. hut. 
fi/ proje cts/ somto olbox).

Heatmap presentation of taxa in each BMU was gen-
erated using conditional formatting in Microsoft Excel 
v.16.0: values of environmental variables were coloured 
according to their average values for every BMU, and 
taxa according to their average CLR-transformed values. 
Further, heatmap.2 function of gplots v3.1.3 R package 
was used to construct heatmaps representing community 
composition based on Aitchison distances and Ward.D2 
dendrogram agglomeration method [55].

http://www.cis.hut.fi/projects/somtoolbox
http://www.cis.hut.fi/projects/somtoolbox
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Results
Abundance of AAP bacteria
AAPs were observed in all 90 samples (Fig.  2) and 
their mean absolute abundance in the study area was 
1.43 ± 0.75 ×  104 cells  mL−1. The lowest value was 
recorded at station CJ007 in August at a depth of 
30  m (0.30 ×  104 cells  mL−1), while the highest value 
was observed at station ST101 in May at the sea sur-
face (3.41 ×  104 cells  mL−1). The average relative abun-
dance was 3.86% ± 2.27% (minimum 0.55% at station 
CJ007 in August at 30  m depth; maximum 10.26% at 
CJ009 in April at 50  m depth). At the monthly level, 
the highest mean abundance was recorded in June with 
2.19 ± 0.62 ×  104 cells  mL−1, followed by almost identical 
values in April with 2.18 ± 0.41 ×  104 cells  mL−1, while the 
lowest mean abundance was observed in January 2022 
with 0.7 ± 0.25 ×  104 cells  mL−1 and in February 2021 with 
0.84 ± 0.22 ×  104 cells  mL−1.

Absolute and relative abundances of AAPs significantly 
differed on a seasonal scale (PERMANOVA pseudo-
F = 23.13, p = 0.0001, unique permutations = 9957; 
pseudo-F = 27.98, p = 0.0001, unique permutations = 9948 
respectively), but not with respect to region or depth 
(Additional file  1: Table  S3A and S3B respectively), 
although a decreasing trend was observed towards the 
open sea (Fig. 3). The pairwise comparisons showed that 
spring was the only season different from others (Addi-
tional file 1: Table S3). However, seasonal absolute abun-
dances also differed in dispersion (PERMDISP test, group 
factor: Season, F = 5.05, p = 0.0067, 9999 permutations), 

while relative abundances did not (PERMDISP test, 
group factor: Season, F = 1.51, p = 0.27), suggesting differ-
ences also stem from larger variances between samples.

FISH‑IR
To quantify which proportion of AAPs belong to the 
Alphaproteobacteria and Gammaproteobacteria classes 
or to the Roseobacter clade, a method based on epifluo-
rescence microscopy, FISH-IR, was used. In the study 
area, gammaprotebacterial AAPs had a mean relative 
abundance of 35.25%, Alphaproteobacteria 31.15% and 
Roseobacter 37.66%. Complete results are presented and 
visualized in Additional file  2. During data acquisition 
and processing, several limitations of the ALF968 probe, 
targeting all Alphaproteobacteria were observed: per-
centage of AAP cells hybridized with the ROS537 probe 
(Roseobacter clade within Alphaproteobacteria) generally 
exceeded the number of cells detected with the ALF968 
probe, and a total sum of all probes was often greater 
than 100%. Therefore, in silico coverage and specific-
ity of ALF968 and ROS537 probes for the order Rhodo-
bacterales were estimated against SILVA database. The 
ALF968 had larger coverage than the ROS537 probe 
(96.3% vs. 92.9%), but showed reduced specificity (92.96% 
vs. 99.32% respectively), which might explain this phe-
nomenon (Additional file  5). After correlating FISH-IR 
and pufM metabarcoding data, we observed strong posi-
tive correlation (r = 0.745) for Gammaproteobacteria, 
moderate positive correlation (r = 0.651) for Alphapro-
teobacteria and strong positive correlation (r = 0.717) for 

Fig. 3 Absolute abundances of AAPs shown per station (ST101, CJ007 and CJ009) and season
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Roseobacter, indicating consistency in the relative abun-
dance patterns between these two methods. All correla-
tions were statistically significant (p < 0.001) (Additional 
file  4). We conclude that results from FISH-IR probes 
Gam42a and ROS537 targeting class Gammaproteobac-
teria and Roseobacter clade respectively can be trusted 
and contribute additional value to data quantitative 
interpretation.

AAPs belonging to Roseobacter clade showed the 
highest relative abundance (77.77%) at station ST101 
at 35  m in August and the lowest one (14.29%) at 
CJ007 station at 50 m in August. The highest average 
relative abundances were recorded in autumn and the 
lowest average ones in summer, except for ST101 sta-
tion (Additional file 2: Figs. S2 and S3). Gammaproteo-
bacteria AAPs had the highest relative abundances in 
samples collected from the surface (0  m) of open sea 
station CJ009 in February (78.9%), followed by samples 
from station CJ007 at 30 m depth in August (75%) and 
station ST101 at 35  m depth also in August (71.4%). 
The lowest value (8.3%) was measured at the sea sur-
face in January at station CJ009. In terms of seasonal 
distribution, they were on average predominant in 
summer at all stations, with the lowest contribution in 
winter (Additional file 2: Figs. S2 and S3).

AAP community composition on a spatiotemporal scale 
obtained via metabarcoding
When considering the composition of the AAP com-
munity obtained from the pufM sequencing dataset 
agglomerated at the genus level, statistically significant 
seasonal differences were observed (PERMANOVA, 
pseudo-F = 2.06, p = 0.0037, unique permutations = 9890, 
Additional file 1: Table S4). Similarly to total AAP abun-
dances, there were no differences between spatial or ver-
tical profiles. Pairwise comparisons showed that summer 
differed from other seasons (Additional file 1: Table S4). 
There were no differences in dispersion between seasons 
(PERMDISP, F = 1.89, p = 0.2035, 9999 permutations). 
Slight separation of summer samples from others was 
observed in PCA biplot, with possible subdivision within 
the group (Fig. 4). Taxa contributing most to separation 
of summer from other seasons (with higher contribution 
during summer) were Puniceibacterium genus, UBA868, 
Xanthobacteraceae and Maricaulaceae family (Fig. 4).

Phylum Proteobacteria dominated in all samples. Inter-
estingly, the phylum Gemmatimonadota, family Gem-
matimonadaceae, represented by two ASVs (ASV550 
and ASV559) unclassified at genus level, was observed in 
a very low relative abundance (mean 0.002%) in a sam-
ple collected in April at 30 m depth at station CJ007, as 
well as in few others in a very low number of reads. For 
details, please see Additional file 3 (sheets "ASV_matrix" 
and "Taxonomy").

Fig. 4 Variance‑based compositional principal component (PCA) biplot on Aitchison distances of pufM dataset (agglomerated at genus‑level 
and CLR transformed) showing groupings by season (W‑Winter, Sp‑Spring, S‑Summer, A‑Autumn) where names of top 10 taxa by the longest 
loading vector length are indicated
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At the class level, the AAP community composition 
was dominated by Gammaproteobacteria in all samples 
(75.9% on average), with the highest values in December 
at stations ST101 and CJ007 and in November at sta-
tion CJ009. In contrast, the lowest relative contribution 
was recorded in February at the sea surface at station 
ST101, when their relative abundance dropped < 40%, 
and in March, also at the sea surface at station CJ007 
with relative abundances of ~ 50% (Additional file 1: Fig. 
S3). The alphaproteobacterial AAPs had an average rela-
tive abundance across all samples of 24.1% with the high-
est contribution to the total number of reads among the 
sea surface samples in February at ST101 (~ 60%) and in 
March at CJ007 (~ 40%).

Looking at AAP orders, the gammaproteobacterial 
Pseudomonadales dominated at all stations and in all 
months during the sampling period (Fig.  5), except for 
the lowest contribution in February at the sea surface 
at station ST101 (< 40%) and in March, also at the sea 
surface at station CJ007 (~ 50%). Burkholderiales had 
higher relative abundance (~ 10%) in February at 0 m at 
station ST101 and in May at dChlMax (non-standard 
oceanographic depths, 68  m) at station CJ009. Order 
Rhodobacterales (family Rhodobacteraceae), which rep-
resented 96% of Alphaproteobacteria, was also omni-
present at all stations and in all months, with the highest 
relative contribution recorded in February at the sea 
surface at station ST101 (~ 60%) and in March, also at 
the sea surface at station CJ007 (~ 40%). In contrast, the 

alphaproteobacterial orders Rhizobiales, Sphingomon-
dales and Caulobacterales occurred occasionally in rela-
tive abundances > 1% (Fig. 5).

Numerous AAP genera (71 of total 86) occurred in 
relative abundances of less than 1%, while the 15 most 
prevalent ones accounted for 99% of the sequencing data 
(Fig.  6). In general, genus Luminiphilus (phylogroup K, 
order Pseudomonadales, family Halieaceae) dominated 
the AAP community, with relative abundance exceeding 
90% in some samples. In total, 146 different ASVs were 
recorded for this genus, with different relative contri-
bution at specific stations, depths and months. Details 
about the distribution of Luminiphilus ASVs are given in 
Additional file  6. Limnohabitans was detected in abun-
dance > 1% at sea surface station ST101 in February, 
but not towards the open sea. The Alphaproteobacte-
ria CACIIZ01 and Rhodobacteraceae Puniceibacterium 
were not recorded at costal station ST101, and sporadi-
cally on other stations (Fig. 6). The genus Planktomarina 
showed the highest relative abundance (~ 20%) at station 
ST101 in February at the sea-surface and higher values 
in November regardless of depth at stations ST101 and 
CJ007. Genus MED_G52 of the Rhodobacteraceae fam-
ily was present in abundance up to 10% at all stations, in 
all seasons and depths, except in December at stations 
ST101 and CJ007 (present in > 1% only at 0  m) and in 
November at CJ009 (< 1%).

The lowest average number of observed ASVs was 
recorded in winter (124.34 ± 50.9), while the highest 

Fig. 5 AAP orders detected in the study area via pufM metabarcoding shown per station (ST101, CJ007 and CJ009), month and depth
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one was recorded in autumn (132.6 ± 56.38). The aver-
age Shannon diversity indices were highest in summer 
(3.5 ± 0.44) and lowest in autumn (3.39 ± 0.68), while 
the average values for winter and spring months were 
in between (3.45 ± 0.39 and 3.47 ± 0.35, respectively). 
The average Pielou’s evenness showed the same trend as 
Shannon indices, with the highest average values in sum-
mer (0.73 ± 0.05) and the lowest in autumn (0.70 ± 0.08) 
(Additional file 1: Table S5).

Neural gas analyses of pufM gene metabarcoding data
To gain a deeper insight into AAP community composi-
tion at a finer taxonomic resolution and their structuring 
in the light of biotic and environmental parameters, neu-
ral gas (NG) analysis, an artificial neural network algo-
rithm robust to outliers, was applied to pufM sequencing 
dataset at order-, genus- and ASV-levels. Agglomera-
tion of dataset to higher taxonomic rank (order) was 
necessary for comparison to previous literature, and the 
rationale behind running multiple analyses on lower tax-
onomic ranks was to reveal if a particular genus within 
order, or ASVs of certain genera have consistent overall 
behaviour (relative abundance) in a certain environment 
or not. Another rationale behind running the order-level 
neural network was that a lot of AAP genera, even with 
the most complete taxonomic database up to date, are 

still unclassified (e.g. genera of Rhizobiales order). Addi-
tionally, identification at species level was not possible 
with methodology used here, so there is an important 
taxonomic link missing between genus and ASVs, chal-
lenging the interpretation of this model. Hence, we focus 
on order- and genus- level data.

AAPs agglomerated at the order level were clustered 
into five distinctive BMUs according to their relative 
contribution to community (Fig.  7, Additional file  7: 
Fig. S1, Additional file  8). Detailed description of each 
BMU unit is given in Additional file  7. BMUs generally 
described most nutrient-enriched (BMU1), warmest and 
shallowest (BMU2), lowest ammonia (BMU3), maximum 
nitrite (BMU4) and coldest, nutrient-depleted, deep-
est and most saline (BMU5) environment (Fig. 7). In all 
units, two orders were omnipresent and showed con-
sistently high contribution regardless of environmental 
conditions: Pseudomonadales and Rhodobacterales. In 
contrast, orders Acetobacterales, UBA8317, Gemma-
timonadales, Xanthomonadales and Thalassobaculales 
occurred transiently in higher, but mostly in very low val-
ues (Fig. 7).

Based on the pufM dataset agglomerated at genus 
level, five distinct BMUs were also formed covering a 
total of 86 unique genera (Fig.  8, Additional file  7: Fig. 
S2 and Additional file 9). Detailed descriptions for each 

Fig. 6 AAP community composition via pufM metabarcoding in the study area at the genus level shown per station (ST101, CJ007, CJ009), month 
and depth
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Fig. 7 Neural gas analysis of pufM dataset agglomerated at the order level clustered into five distinctive BMUs according to their relative 
contribution to AAP community (expressed as average CLR‑transformed values) and connected average values of biotic (UHB, HIGH, SYN, 
PROCHL, PE, BP, HNF, AAP, percentages of FISH‑IR groups) and abiotic (Temp, Sal,  NO3

−,  NO2
−,  NH4

+, DIN,  PO4
3−, PTOT,  SiO4

2−, Chl a, N/P) variables 
of the environment. Colour gradient from red to green represents the lowest and highest average values respectively
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BMU are given in Additional file  7. Genera Luminiphi-
lus (family Halieaceae, order Pseudomonadales, class 
Gammaproteobacteria), the uncultured LFER01 as well 
as Planktomarina and CACIJG01 (family Rhodobacte-
raceae, order Rhodobacterales, class Alphaproteobac-
teria) had almost the same high average values across 
all units. In nutrient-enriched and low-salinity habitat 
(BMU1), higher representation of Nereida, CYK10, Thal-
assobacter, and the Gammaproteobacteria RS62, Rho-
doferax and Limnohabitans was noted, coupled with the 
highest abundance of AAPs, heterotrophic bacteria and 
picoeukaryotes (Fig.  8). Genera Erythrobacter (order 
Sphingomonadales), Planktotalea and Palleronia (Rho-
dobacteraceae) clustered with the lowest abundances of 
total heterotrophic bacteria, Synechococcus, picoeukary-
otes and low abundances of AAPs as well as HNF, pre-
ferring the warmest habitat with low ammonia, Chl a, 
nitrate and nitrite (BMU2). The most saline yet diverse 
habitat scarce with nitrate and dissolved inorganic nitro-
gen, where AAP abundance was lowest, was dominated 
by the highest value of genera Roseovarius, Punicei-
bacterium and CACIIZ01 (Rhodobacteraceae) and the 
gammaproteobacterial CABYJX01 (Halieaceae, Pseu-
domonadales), indicating these genera do not appear 
to be controlled by a low-N environment (BMU3). The 
shallowest unit with a clear spatiotemporal pattern 
(almost all winter samples from transitional/open sea sta-
tions) with the lowest average temperature, scarce with 

nitrate, silicate, absolute abundances of Prochlorococ-
cus but abundant with Synechococcus, HNF and AAPs 
were characterised by higher incidence of CACIJG01, 
Rubricella, GCA2689605 (Alphaproteobacteria, family 
Hyphomicrobiaceae) and UBA868 (Arenicellales), indi-
cating their preference for colder environments (BMU4). 
Genera Roseobacter and Sphingomonas, rarely found 
in other units, preferred nutrient-rich habitat (BMU5), 
characterised by very high average salinity and tem-
perature above 16  °C, rich in nitrite, silicate and Chl a, 
with maximum absolute abundances of Prochlorococcus, 
picoeukaryotes, high abundances of Synechococcus and 
AAPs, but with the lowest diversity (Fig.  8). In respect 
to order-level model, it was noticed that the most domi-
nant genera inside a particular order (e.g. genus Lumin-
iphilus of order Pseudomonadales and LFER01 of order 
Rhodobacterales) masked rare ones, which did not fol-
low general behaviour of the order. Examples include 
Nereida and Puniciebacterium of order Rhodobacterales 
which were inconsistently present in high values across 
units. Another example is rare genus Rubrivivax which 
expressed different behaviour from Burkholderiales order 
it belongs to (Figs. 7 and 8).

ASV-level NG model based on an entire ASV data-
set (661 ASVs) also revealed five distinct units (BMUs). 
ASVs of the same genus exhibited different behaviours, 
but it was difficult to describe each specific variant 
of each genus. The most prominent variants of major 

Fig. 8 Neural gas analysis results of pufM dataset agglomerated at the genus‑level and CLR‑transformed, clustered into five BMUs. Biotic (UHB, 
HIGH, SYN, PROCHL, PE, BP, HNF, AAP, diversity metrics) and abiotic (Temp, Sal,  NO3

−,  NO2
−,  NH4

+, DIN,  PO4
3−, PTOT,  SiO4

2−, Chl a, N/P) variables 
of the environment are given in (A) as average value for each unit. Relative contribution of specific genera to AAP community (expressed as average 
CLR‑transformed values) is shown in (B). Colour gradient from red to green represents the lowest and highest average values respectively
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genera that showed specific behaviour in certain BMU 
are shown in Additional file  7: Fig. S3. What can be 
observed is that in this model, we generally perceive 
more variation in respect to order- and genus-level 
models, i.e. certain ASVs appear only in some BMUs 
and are missing from others, which was masked at 
higher taxonomic levels.

Discussion
Since AAPs represent a fascinating group of ubiqui-
tous photoheterotrophs important for carbon cycling, 
they have been extensively studied in various environ-
ments in recent decades, especially in aquatic ones 
[10]. Previous research in the Adriatic Sea focused on 
their abundances estimated from Bchl a concentrations 
along a latitudinal transect [56], and on counts from 
coastal and estuarine waters along the eastern Adriatic 
coast in summer using infrared epifluorescence micros-
copy [22]. Subsequent studies based on one-year sam-
pling along the trophic gradient described their spatial 
and vertical distribution with maximum abundances 
reported in late winter (April) [23]. A recent review 
article collected seven years of data from 34 sites to 
gain insights into their distribution and controlling 
environmental factors in the Adriatic Sea [24].

However, a comprehensive analysis of AAP com-
munity structure in the Adriatic Sea on a fine taxo-
nomic scale has not been yet described. In this study, 
we present their community composition during one 
year in the central Adriatic from three stations along 
the trophic gradient using pufM metabarcoding and 
quantitative FISH-IR approach. In addition, neural gas 
algorithms were applied to agglomerated at order- and 
genus-level sequencing dataset (CLR-transformed after 
agglomeration) and ASV-level to reveal patterns of the 
AAP community in respect to specific physicochemical 
and biological variables.

In the study area, significant differences in seasonality 
were observed in terms of AAP abundances (maximum 
average value in spring: 2.136 ± 0.081 ×  104 cells  mL−1, 
minimum in summer: 0.86 ×  104 cells  mL−1), FISH-IR 
groups (Roseobacter prevalent in autumn, Alpha- and 
Gammaproteobacteria in summer) and pufM genus-
agglomerated metabarcoding data. However, no clear 
spatial pattern emerged, as previously reported for the 
Mediterranean coastal lagoon [57]. The pronounced 
seasonality is consistent with the first long-term study 
based on pufM amplicon dataset from the northwest-
ern Mediterranean, which was conducted over a dec-
adal period and found that this community is highly 
seasonal, with certain taxa showing recurrent patterns 
[5].

AAP abundances
As for the absolute abundances, the average values of 
1.427 ± 0.754 ×  104 cells  mL−1 correspond to those pre-
viously reported for the central Adriatic. However, the 
range of 0.30 ×  104 to 3.41 ×  104 cells  mL−1 was narrower 
in our study, compared to studies that sampled Adriatic 
estuaries [22–24]. The average relative abundance of 
AAPs was 3.862% ± 2.266% of total prokaryotes (mini-
mum of 0.548%, maximum of 10.258%), which is compa-
rable to previous results from the Adriatic [22, 23] and 
the Mediterranean [4, 18, 57], as well as the Global Ocean 
Sampling Expedition [41]. As in the study by Ferrera et al. 
[18] where maximum abundances of AAPs were found in 
summer, a clear and significant seasonality was observed 
in our study. In contrast, we have detected the maximum 
average abundance in spring, the only season signifi-
cantly different from the others in the pairwise compari-
son, and the minimum average abundances in summer. 
The maxima observed in April and June are comparable 
to a previous study in the Adriatic, where maximum AAP 
abundances were also reached in April at all stations, with 
increased phosphorus concentrations and lower N/P 
ratio as possible explanations [23]. Depth in the range 
from 0 to 100 m as well as dChlMax did not prove to be 
a significant environmental factor controlling AAP abun-
dance in this study, suggesting that, contrary to previous 
results [23, 58], sea transparency of the central Adriatic 
was not a crucial factor affecting this community. Incon-
sistency in spatial and vertical distribution pattern in our 
study compared to previous research in Adriatic could 
be possibly explained by the trophic status of study area. 
Previous research covered more eutrophic coastal and 
estuarine area to the oligotrophic open sea [23], whilst in 
our study differences in trophic status were less enhanced 
and overall oligotrophic at all depths. Potential explana-
tion for inconsistency in spatial distribution compared to 
previous results could be attributed to geographic prox-
imity of stations studied in our research, while in previ-
ous ones larger study area was covered [22, 23].

Quantitative estimates from FISH‑IR
Quantitative estimates of specific bacterial groups result-
ing from fluorescence in  situ hybridisation combined 
with catalysed reporter deposition (CARD-FISH) have 
been widely reported in numerous ecological studies 
for years [14, 27, 59–61]. Nevertheless, quantitative esti-
mates of AAPs taxonomically assigned to specific clades 
or groups are rare [21, 29], especially for environmental 
samples. In our study, FISH-IR was applied to quantify 
the percentage of AAPs assigned to either the Gam-
maproteobacteria class, the Alphaproteobacteria class 
or the Roseobacter clade. Overall, the AAP community 
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in the central Adriatic was quite heterogeneous accord-
ing to these three probes, with the highest mean relative 
abundances of AAPs associated with Roseobacter clade, 
followed by gammaproteobacterial AAPs and alphapro-
teobacterial ones. A distinct seasonal pattern emerged, 
with AAPs assigned to Roseobacter clade generally less 
abundant in warmer months and more prevalent in 
autumn, while the patterns of general Alphaproteobac-
teria and Gammaproteobacteria were inverse to those of 
Roseobacter. The proposed term Roseobacter clade stands 
for a group of marine Rhodobacteraceae (members of 
the Rhodobacterales order that share 89% identity of 16S 
rRNA gene sequences), which are known to be ubiqui-
tous in seawater and crucial for biogeochemical cycling 
of various elements [62]. Most of the cultured members 
have quite large genomes, high GC content (~ 60%) and 
a wide diversity of metabolic capabilities. Both free-living 
and/or associated with phytoplankton and microalgae, 
Roseobacter-like bacteria could account for up to 30% 
of bacterial communities in marine environments [27, 
62, 63]. The lower contribution of AAPs assigned to this 
clade observed in summer contrasts with previous find-
ings where the Roseobacter clade (represented as % of 
total bacteria, determined via CARD-FISH) had the high-
est average relative abundances in summer [27, 64]. How-
ever, the capability for aerobic anoxygenic phototrophy, 
recruited via horizontal gene transfer, is considered to 
be present in at least 14 phylogenetically distinct strains 
of roseobacters, but not in all Roseobacter-clade mem-
bers [62, 65]. Therefore, we hypothesize that the seasonal 
behaviour of AAPs that belong to Roseobacter clade may 
potentially differ from other Roseobacter-clade members 
due to AAPs’ advantage of photoheterotrophy (i.e. heter-
otrophic energy acquisition through oxidation of organic 
matter coupled with light utilization) [62]. Nevertheless, 
FISH-IR data in conjunction with the NG order-level 
model revealed that AAP roseobacters prefer a warm, 
less saline and nutrient-enriched environment (order-
level BMU1, without distinct seasonality observed), asso-
ciated with the highest absolute abundances of AAPs, 
suggesting that Roseobacter-like bacteria dominate the 
AAP community in the described environment. Another 
pattern significant for roseobacters was their preference 
for ammonia regardless of ambient temperature, with 
their lowest counts in BMU3 coinciding with the lowest 
ammonia concentrations and vice versa in an ammonia-
enriched habitat (BMU5). This is to be expected as many 
organisms in the Roseobacter clade can utilise nitrogen 
exclusively in a reduced form, as they do not possess 
genes encoding enzymes for nitrate and nitrite reduc-
tion, but gene clusters encoding enzymes for the uptake 
of ammonium, amino acids, spermidine and urea [66]. 
The observed seasonal dynamics of Alphaproteobacteria 

AAPs, characterised by the highest average relative abun-
dances in summer and the lowest ones in autumn, is in 
contrast to previously reported seasonal behaviour of 
total Alphaproteobacteria estimated with CARD-FISH 
[27, 64, 67]. These results contradict the assumption that 
Alphaproteobacteria are generally good competitors 
in oligotrophic environments (predominant in winter 
months), suggesting that the behaviour of Alphaproteo-
bacteria AAPs may differ from general bacterial commu-
nity patterns, preferring eutrophic habitats despite their 
phototrophic capabilities [7, 10, 68]. In contrast, the peak 
abundances of gammaproteobacterial AAPs in summer 
are comparable to previous findings about general Gam-
maproteobacteria, indicating their preference for higher 
nutrient concentrations (mainly total nitrogen), assimila-
tion of organic carbon sources and generally higher tem-
peratures [27, 68].

When discussing these results, it is crucial to bear in 
mind the substantial limitations of FISH-IR method as 
well as the coverage and specificity of oligonucleotide 
probes. As mentioned in Results, percentage of AAP cells 
hybridized with the ROS537 probe was generally higher 
than the number of cells detected with the ALF968 probe, 
sometimes leading to a total sum of relative abundances 
greater than 100%. Similar results were also observed 
in other studies for same probes, but for CARD-FISH 
results [27, 69, 70]. Riou et  al. [71] re-evaluated the in 
silico specificity of eleven bacterial and eukaryotic probes 
regularly used to enumerate marine microbes via CARD-
FISH and found that both the Ros537 and Roseo536R 
probes identified 91% of the alphaproteobacterial Roseo-
bacter clade, but also targeted 2.9% of sequences classified 
as non-Roseobacter (other members of the Rhodobac-
terales order). Similar result was observed in our study 
when in silico evaluating ROS537 probe, with coverage 
of 92.9% and specificity of 99.3%. In addition, previous 
studies reported false-positive hits and misclassifica-
tion of marine Gammaproteobacteria with the Gam42a 
probe and of Alphaproteobacteria with the ALF968 
probe, with group coverage of 76% and 81%, respec-
tively [72]. In our study, ALF968 probe showed higher 
in silico coverage (96.3%) of Rhodobacterales order than 
ROS537 probe, but with lower specificity (~ 93%). Hence, 
we speculate that superior complementary base pair-
ing close to 100% of ROS537 probe, especially for genera 
Nereida, Planktomarina and Puniceibacterium detected 
in higher relative abundances with pufM metabarcoding, 
could explain higher relative abundances observed with 
ROS537 than ALF968. This may indicate an urgent need 
for FISH probes redesign, especially ALF968. Further-
more, almost all Alphaproteobacteria (96%) detected in 
this study belong to the Roseobacter clade (i.e. Rhodobac-
terales order, Rhodobacteraceae family) as revealed by 
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metabarcoding results. Considering decreased specificity 
of the ALF968 probe, this might explain why numbers fall 
below that of ROS537 probe. Other major disadvantages 
of FISH, besides the coverage and affinity of the probes 
for complementary nucleic acids, are low and variable 
number of ribosomes (targets) in certain bacterial cells, 
the lack of cells’ permeabilization and discrepancies in 
the binding of fully complementary oligonucleotides, dis-
cussed in detail elsewhere [72]. Another substantial limi-
tation of this method that may have affected the results 
was the rapid fading of Bchl a autofluorescence when 
infrared and probe signals were simultaneously detected, 
which often required rapid and repeated manipulation 
when images were acquired. Nevertheless, positive cor-
relation between FISH-IR and pufM pseudoabundances 
for corresponding taxonomic levels indicate that FISH-
IR data image well relative patterns observed in AAP 
community, while Gam42a and ROS537 probes con-
tribute solid quantitative estimates of these groups. This 
becomes important when considering inherent primer 
bias in metabarcoding, especially in respect to Gam-
maproteobacteria (see further below) where FISH-IR 
data provide alternative estimate and added value to the 
dataset (35.3% FISH-IR Gam42 vs. 75.9% pufM metabar-
coding). These findings pave the way for protocol optimi-
zations and new probe designs targeting AAPs.

Community structure from pufM gene metabarcoding
Although we have obtained taxonomic resolution at the 
genera level, for the purpose of comparison to previ-
ously published studies, taxonomic phylogroups pro-
posed by Yutin et al. [41] will be referred to if they have 
a taxonomically described representative in our data-
set. The community composition determined by pufM 
gene sequencing is consistent with the results of Aul-
adell et  al. [5] from the northwestern Mediterranean 
region mentioned earlier, where Gammaproteobacte-
ria belonging to the NOR5/OM60 group (phylogroup 
K; Pseudomonadales) dominated the AAP composition 
over a decade with a mean relative abundance of 83.8%, 
while their mean relative contribution in our study was 
75.9%. Interestingly, the similar decrease in the contribu-
tion of Gammaproteobacteria as in Auladell et al. [5] for 
months of February and March (59.6% and 52% on aver-
age, respectively) was also observed in our study, with 
a relative respective contribution of < 40% and 50%. In 
these months, we detected an increased incidence of Alp-
haproteobacteria, specifically order Rhodobacterales, in 
February for ST101 and in March for CJ007. Order Rho-
dobacterales in the study area was associated with phy-
logroups E, F and G. Occasional peaks of certain AAPs 
with relative contributions > 1%, as reported in other 
studies, were also present in our survey. For instance, 

Sphingomonadales peaked in April, Caulobacterales in 
August, and the genus Planktomarina (phylogroup E) 
in February and November [5, 7]. However, a long-term 
survey is required to assess whether these occurrences 
are repeatable.

At the genus level, community composition in our 
study area was dominated by Gammaproteobacterium 
Luminiphilus (phylogroup K, OM60/NOR5 clade; order 
Pseudomonadales, family Halieaceae), a mesophilic and 
moderately halophilic photoheterotroph common in 
seawater and surface layers of littoral marine sediments 
[73]. Besides Luminiphilus, taxon with the highest rela-
tive contribution to AAP community composition was 
LFER01, belonging to Rhodobacterales order (phylo-
group G, family Rhodobacteraceae). Of interest is the 
report of two Gemmatimonadota ASVs at transition sta-
tion CJ007, the first report of Gemmatimonadota AAPs 
in marine habitat, although they were present in a very 
low relative abundance. This indicates that amplicon 
sequencing provides a suitable tool for detection of very 
low abundant (0.1–10%) taxa, compared to metagen-
omics [19]. Gemmatimonadota is a poorly studied bac-
terial phylum, with only six cultivated representatives 
reported to date, whose photoheterotrophic and hetero-
trophic members are commonly found in soil, euphotic 
zones of freshwaters, sewage treatment plants and sedi-
ments, however their photoheterotrophic members were 
not yet detected in marine habitats [74, 75]. Two ASVs 
observed in our study were assigned to unclassified gen-
era of the family Gemmatimonadaceae. Currently, only 
two cultivated representatives, Gemmatimonas photo-
trophica and Gemmatimonas groenlandica, are known 
to possess the capacity for anoxygenic photosynthesis. 
However, metagenome-assembled genome analyses have 
shown that anoxygenic photosynthesis is also present in 
uncultivated lineages of Gemmatimonadota [74, 76]. We 
hypothesise that the Gemmatimonadota detected in our 
study may originate from the river basin of the Adriatic 
karst rivers, namely Jadro and Cetina, or are passively 
transported from the sediment.

As previously confirmed by different methodologi-
cal approaches such as metagenomics [5, 77], amplicon 
sequencing [5, 7] and microscopy [18], our results also 
indicate an inverse relationship between AAP abundance 
and diversity metrics in summer. The highest AAP diver-
sity in relation to the Shannon index and Pielou’s even-
ness was found when AAP abundance was the lowest in 
August. This contrasts with previous results from a long-
term study by Auladell et  al. [5] (NW Mediterranean), 
where diversity was highest (when abundance was low-
est) in winter. In our study, no clear inverse relationship 
was found between AAP abundance and diversity meas-
ures in other seasons.
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Although amplicon sequencing is cost-effective com-
pared to metagenomics, primer biases due to high vari-
ability in protein-coding gene sequences, such as in the 
pufM gene, remain a major drawback of this approach 
[19]. A recent article by Gazulla et  al. [19] compared 
metagenomic and metabarcoding approaches using exist-
ing and newly designed primers (pufMF/pufM WAW, 
UniF/UniR and pufMF_Y/pufM WAW) and showed that 
all primer pairs are biased towards Gammaproteobacte-
ria and even some members of Alphaproteobacteria. In 
our study, we used UniF/WAW primer pair combination 
and obtained successful PCR amplification on marine 
samples, unlike Gazulla et al. [19] (see Additional file 1: 
Table S2). However, it is reasonable to expect these prim-
ers also possibly overestimate the Gammaproteobacterial 
AAPs (Pseudomonadales, phylogroup K) to the detri-
ment of uncultured representatives and results should be 
interpreted with caution. As mentioned previously, pufM 
metabarcoding estimates relative contribution of Gam-
maproteobacteria to 75.9% while FISH-IR Gam42 to 
35.3%. Moreover, PCR reaction optimisation was lengthy 
and tedious, possibly due to the very low GC content of 
UniF, the low melting temperature and ten degenerate 
nucleotides in the primer sequence. Instead, the newly 
designed forward primer pufMF_Y in combination with 
the reverse primer WAW and the universal UniF/UniR 
primer pair are currently proposed to obtain a less biased 
taxonomic representation of marine AAP [19].

Environmental variables affecting AAP community 
composition
Neural gas models linking sequencing data to biotic/abi-
otic environmental factors have already been successfully 
applied to 16S rRNA gene datasets [25, 27]. Here, they 
were performed at order-, genus- and ASV-levels of the 
pufM dataset to extract characteristic patterns that could 
potentially elucidate still unresolved ecology of AAPs. In 
general, the Adriatic Sea is an oligotrophic environment, 
scarce in nitrogen and phosphorus, with low productiv-
ity and elevated average salinity [78, 79]. In order- and 
genus-NG models, the maximum abundance of AAPs 
was detected in more productive environments (BMU1 
in both and BMU5 in the genus-NG model), namely 
those with the highest concentrations of soluble reactive 
phosphorus, nitrate and dissolved inorganic nitrogen, 
consistently coupled with the highest abundance of total 
heterotrophic bacteria [10]. The gammaproteobacterial 
order Burkholderiales (phylogroup I), represented by 
the genera Rhodoferax and Limnohabitans, as well as the 
alphaproteobacterial lineage SP197 and genera belong-
ing to order Rhodobacterales, family Rhodobacteraceae 
Planktomarina (phylogroup E), Nereida (phylogroup 
G), CYK10 and Thalassobacter (phylogroup E) were 

present in increased relative abundances in nutrient-
enriched environments with the highest AAP diversity. 
Conversely, the abundance of AAPs was lowest in nutri-
ent-poor habitats with low nitrogen and phosphorus, 
according to order- and genus-model. Another feature 
evident in aforementioned models is the inverse relation-
ship between AAP abundance and salinity as a potentially 
important controlling factor: the lowest abundance was 
found in the most saline habitats and vice versa. How-
ever, in contrast to previous research from saline lakes 
of the Tibetan Plateau, neither clear nor inverse relation-
ship between diversity measures and salinity was found 
in our study [80]. The observed number of ASVs and 
Shannon index reached a maximum in habitats with the 
lowest salinity, while a similarly high number of ASVs, 
Shannon index and highest Pielou’s evenness were found 
in habitats with the highest salinity (BMU3), suggesting 
that AAP diversity is not necessarily directly impacted by 
salinity. Furthermore, the high AAP diversity in different 
habitats, both nutrient-rich (BMU1) and nutrient-poor 
one (BMU3), was independent of temperature or salinity 
in the studied area, again indicating a different behaviour 
of AAPs compared to the general bacterial population. 
Previous results focusing on bacteria and archaea in the 
Adriatic Sea pointed to the "plankton paradox": archaeal 
and bacterial diversity is lowest in the environment with 
the highest abundance of picoplankton members, bacte-
rial production and chlorophyll concentration, while, on 
the contrary, the highest bacterial diversity was measured 
in deep and saline environments abundant with nitrates, 
nitrites and soluble reactive phosphorus [25, 27]. Never-
theless, a high average salinity (38.35) combined with a 
temperature greater than 16 °C associated with the high-
est concentrations of nitrites, silicates and Chl a nega-
tively affected AAP diversity (BMU 5). In contrast to 
previous studies [5, 24], there was neither a clear nor a 
linear relationship between Chl a (coupled with cyano-
bacterial abundance peaks), and the abundance of AAPs 
in our order- and genus-level models.

The alphaproteobacterial orders Rhizobiales (phylo-
group J), Sphingomonadales, Caulobacterales and Areni-
cellales occurred simultaneously in higher incidence in 
habitats scarce with nitrate/ammonia and temperatures 
above 16  °C (BMUs 2 and 3). Conversely, they had low 
values in nitrogen-enriched environments (BMUs 1 
and 4), indicating an inverse relationship between their 
relative abundances and nitrogen compounds and pos-
sibly their preference for low-nitrogen habitats. Cau-
lobacterales, Rhizobiales and Sphingomonadales also 
co-occurred in a recent study conducted in freshwater 
lakes, possibly indicating a preference of these orders 
for the same environmental conditions, with their max-
ima observed in spring [7]. Recently, the contribution 
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of AAP photoheterotrophic activity to carbon fluxes 
in a freshwater lake was quantified and associated with 
higher relative abundance of Caulobacterales and Sphin-
gomonadales, possibly implying an important role of 
these orders in aquatic habitats [17]. Interestingly, the 
uncultured alphaproteobacterial lineage UBA8366 and 
an unclassified order of Alphaproteobacteria showed the 
highest incidence only in the coldest, scarcest, and deep-
est environment (order-level BMU5) with an average 
depth of ~ 60  m and maximum average salinity (38.71), 
which coincided with the lowest absolute abundances 
of AAPs, total heterotrophic bacteria, Synechococcus, 
Prochlorococcus, picoeukaryotes, HNF and diversity met-
rics. This result is consistent with a previous study that 
found a dominance of Alphaproteobacteria in deeper 
and saltier seawater [27]. A recent article dealing with 
the comparative genomics of Alphaproteobacteria MAGs 
from the Arctic Ocean also showed that the uncultured 
UBA8366 lineage is involved in the degradation of aro-
matic compounds, especially humic substances of terres-
trial origin [81].

To our knowledge, there is no previous literature to 
compare data obtained at genus- and ASV-level analy-
sis in respect to sea-water environmental conditions. 
In addition to the eurivalent genera Luminiphilus (phy-
logroup K, OM60/NOR5 clade; order Pseudomon-
adales, family Halieaceae) and the uncultured LFER01 
(phylogroup G, order Rhodobacterales, family Rhodo-
bacteraceae), which were prevalent in all five distinct 
environments (BMU1-5 at the genus level), alphaproteo-
bacterial genera Planktomarina (phylogroup E), Nereida 
(phylogroup G), CYK10, Thalassobacter (phylogroup E) 
from family Rhodobacteraceae and the Gammaproteo-
bacteria RS62, Rhodoferax and Limnohabitans (phylo-
group I, family Burkholderiaceae) appeared in highest 
values in nutrient-enriched habitat (genus–level BMU1), 
coupled with the highest abundance of AAPs, hetero-
trophic bacteria and picoeukaryotes. These genera pre-
ferred low-salinity environments enriched in nitrates, 
ammonia, dissolved inorganic nitrogen, phosphorus and 
silicates. As already mentioned, this is to be expected as 
Roseobacter group members, such as genus Planktoma-
rina, utilise nitrogen only in reduced form as they lack 
the metabolic pathways for nitrate and nitrite reduction 
and rely on the uptake of ammonium, amino acids, sper-
midine and urea [66]. Regarding ASV-level neural net-
work, it was observed that different variants of the same 
genus behaved differently when clustered in specific 
environment. However, working at the lowest taxonomic 
resolution possible did not result in easily interpretable/
straightforward model which could be compared to pre-
vious literature and order- and genus-level BMUs. We 
contribute this to the fact that we are missing species 

level taxonomic identification and interpretation was 
focused on higher taxonomic rank models instead.

Conclusion
Overall, significant seasonality was observed regarding 
AAP abundances (maximum average values in spring 
and minimum in summer), FISH-IR data (Roseobac-
ter clade prevalent in autumn, Alpha- and Gammapro-
teobacteria in summer) and pufM sequencing dataset 
(highest diversity metrics in summer). Community com-
position in Adriatic Sea based on pufM metabarcoding 
was dominated by Gammaproteobacteria belonging to 
the NOR5/OM60 clade, namely the genus Luminiphilus, 
while numerous other genera were present in low rela-
tive abundances < 1%. An inverse relationship between 
AAP abundance and diversity metrics was observed in 
summer. Neural gas models revealed potentially impor-
tant controlling variables of AAP abundance, community 
structure, and diversity measures. The high AAP diver-
sity was independent of temperature or salinity in various 
trophic environments, indicating a different behaviour of 
AAPs compared to the general bacterial population. We 
emphasize there is need for redesign of FISH-IR Alp-
haproteobacterial hybridization probe, however, positive 
correlation between FISH-IR and pufM metabarcoding 
datasets indicate that FISH-IR provides solid quantitative 
estimates of relative abundances of Gammaprotebacteria 
(Gam42a probe) and Roseobacter clade (ROS537 probe). 
This represents an added value of combining qualitative 
and quantitative approaches, especially when considering 
inherent primer bias towards Gammaproteobacteria in 
pufM metabarcoding.
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