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Abstract

Marine phytoplankton produce and scavenge Reactive Oxygen Species, to support cellular

processes, while limiting damaging reactions. Some prokaryotic picophytoplankton have,

however, lost all genes encoding scavenging of hydrogen peroxide. Such losses of meta-

bolic function can only apply to Reactive Oxygen Species which potentially traverse the cell

membrane outwards, before provoking damaging intracellular reactions. We hypothesized

that cell radius influences which elements of Reactive Oxygen Species metabolism are par-

tially or fully dispensable from a cell. We therefore investigated genomes and transcrip-

tomes from diverse marine eukaryotic phytoplankton, ranging from 0.4 to 44 μm radius, to

analyze the genomic allocations encoding enzymes metabolizing Reactive Oxygen Spe-

cies. Superoxide has high reactivity, short lifetimes and limited membrane permeability.

Genes encoding superoxide scavenging are ubiquitous across phytoplankton, but the frac-

tional gene allocation decreased with increasing cell radius, consistent with a nearly fixed

set of core genes for scavenging superoxide pools. Hydrogen peroxide has lower reactivity,

longer intracellular and extracellular lifetimes and readily crosses cell membranes. Genomic

allocations to both hydrogen peroxide production and scavenging decrease with increasing

cell radius. Nitric Oxide has low reactivity, long intracellular and extracellular lifetimes and

readily crosses cell membranes. Neither Nitric Oxide production nor scavenging genomic

allocations changed with increasing cell radius. Many taxa, however, lack the genomic

capacity for nitric oxide production or scavenging. The probability of presence of capacity to

produce nitric oxide decreases with increasing cell size, and is influenced by flagella and col-

ony formation. In contrast, the probability of presence of capacity to scavenge nitric oxide

increases with increasing cell size, and is again influenced by flagella and colony formation.

Introduction

Phytoplankton cells span a large size range, from picoplankton (<2μm), nanoplankton (2 to

20μm), microplankton (20 to 200μm) to macroplankton (200 to<2000μm) [1]. Cell size
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interacts with multiple selective pressures, including cellular metabolic rate, light absorption,

nutrient uptake, cell nutrient quotas, trophic interactions and diffusional exchanges with the

environment [1–5]. Beyond simple size, cell shapes and growth forms influence diffusional

exchanges between cells and their environment [6].

Characteristics of reactive oxygen species

Phytoplankton both produce and scavenge Reactive Oxygen Species (ROS), both within

and outside the cell membrane, enzymatically and non-enzymatically. Some ROS readily

cross the cell membrane, connecting intra- and extra-cellular pools. Other ROS rarely cross

cell membranes and therefore intra- and extra-cellular pools are at least partially segregated

(Table 1).

Superoxide (O2
•−), a radical anion generated through the monovalent reduction of O2 to

O2
•− [29], is highly reactive [30] with organic compounds including thiols [31], and with met-

als [32, 33]. As the first ROS in a sequential series of reductions of O2, O2
•− is a ‘gateway’ to

production of other ROS. O2
•− is produced both inside and outside a cell [34–39], but shows

limited diffusion across the hydrophobic cell membrane [17]. Multiple oxidases (S2 Table)

reduce O2 and generate either H2O [40], or alternately O2
•− and/or Hydrogen Peroxide

(H2O2) [41, 42]. Biogenic production of extracellular ROS is significant in marine environ-

ments [7, 43–51], and O2
•− in coastal waters is primarily attributable to extracellular produc-

tion mediated by eukaryotic phytoplankton [52]. Some extracellular O2
•− production likely

contributes to cell growth [53].

Two known enzymes mediate conversion of O2
•− to H2O2; the ubiquitous dismutation of

O2
•− catalyzed by diverse Superoxide Dismutases (SOD) or the less prevalent reduction of O2

•

−, catalyzed by Superoxide Reductase (SOR) at the expense of metabolic reductant. O2
•− also

dismutates spontaneously to produce H2O2 and O2 [54], although [55] found that ~52% of

dark O2
•− production likely undergoes oxidation back to O2. Extracellular production of O2

•−

thus contributes to extracellular H2O2 pools [47, 48, 56, 57].

H2O2 passively traverses cell membranes [58], primarily through aquaporins [10–13],

allowing exchange of intracellular and extracellular pools of H2O2, although cells can maintain

a concentration gradient between internal and external H2O2 [59]. H2O2 is acutely toxic to

most cells in the range of 10−5 to 10−4 mol L-1 [58], reacting with thiols and methionine [31]

and interfering with gene expression [60]. Cytotoxic effects of H2O2, including lipid damage,

are however, primarily caused by H2O2 dismutating into the Hydroxyl Radical (HO•), which is

strongly oxidative [9].

Multiple oxidases are important in producing H2O2 (S2 Table), but abiotic processes,

including rainfall, may be dominant sources of extracellular H2O2 in seawater [61–63]. H2O2

concentrations in seawater follow a diurnal cycle with a peak at mid-day [61, 64, 65], suggest-

ing significant direct or indirect photochemical or photobiological generation of H2O2. Het-

erotrophs do not contribute much H2O2 production but mediate H2O2 decomposition [66].

H2O2 also decomposes spontaneously, though slowly, into water and oxygen [67], and contrib-

utes significantly to the redox cycling of copper and iron in seawater [68, 69].

Despite its radical nature and ability to react with biomolecules, •NO functions widely as a

signaling molecule [70–72]. •NO is produced both biogenically through arginine dependent

Nitric Oxide Synthases (NOS) or Nitric Oxide Associated Proteins (NOA) [73], as well as

through abiotic processes including nitrite photolysis [74]. •NO can be enzymatically scav-

enged through Nitric Oxide Dioxygenase (NOD) or Nitric Oxide Reductases (NOR) [75] (S2

Table), and may also react non-enzymatically with reduced glutathione (GSH) to form S-nitro-

soglutathione (GSNO) [21, 76]. Most cellular damage mediated by •NO is attributed to the
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reaction of •NO with O2
•− to produce Peroxinitrite (ONOO−) but this reaction is limited by

the low extracellular concentration of •NO in seawater [16].

Other important ROS, Singlet Oxygen (1O2), Peroxynitrite (ONOO-) and HO• are not

known to be directly produced nor scavenged by enzymatic processes [58, 77–81]. Because of

the high reactivity of HO•, it is unlikely that there are any scavengers dedicated to HO• specifi-

cally [58], although reactions with dissolved organic matter non-specifically scavenge extracel-

lular HO• [82].

The black queen hypothesis

The Black Queen Hypothesis states that loss of function mutations may proceed so long as

some interacting community members retain the function, and the function can occur outside

a given cell [83]. The Black Queen Hypothesis was formulated on the basis of Prochlorococcus,
which lost the genes encoding enzymes which scavenge H2O2. Instead, Prochlorococcus allows

H2O2 outwards across the cell membrane to be dealt with by community members retaining

the capacity to scavenge H2O2, thus saving Prochlorococcus the cost of maintaining the genes

and metabolism for scavenging H2O2 [83, 84]. Growth and survival of Prochlorococcus indeed

improves when co-cultured with ‘helper’ bacteria which carry genes for catalase [84–87].

Hypotheses and significance

Given that ROS show differential abilities to cross cell membranes, and have widely different

diffusion distances before destruction [88], we sought to study whether cell radius, colony for-

mation, flagella, or diatom cell shape influence genomic allocations to ROS production and

scavenging across diverse marine phytoplankters.

Hypothesis 1 Cell radius across phytoplankton taxa does not influence the fraction of

total gene content encoding O2
•− production, nor scavenging. O2

•− is highly toxic and does

not readily cross biological membranes [17], so diffusional losses of O2
•− from cells are limited,

and cells need to retain capacity for detoxification of O2
•− across cell sizes.

Hypothesis 2 Large phytoplankton allocate a smaller fraction of their total gene content

to H2O2 and •NO production and a larger fraction of their total gene content to H2O2 and
•NO scavenging. H2O2 and •NO have relatively low reactivity, with long intracellular and

extracellular lifetimes leading to long potential diffusion paths before destruction. Both H2O2

and •NO are uncharged and readily cross cell membranes (Table 1). Large cells have longer

intracellular diffusional paths and a lower surface to volume ratios than do smaller cells [1].

Large cells are thus less prone to diffusional losses of intracellular H2O2 and •NO. To maintain

H2O2 and •NO homeostasis in the face of slower diffusional losses of H2O2 or •NO out of the

cells to the environment, large phytoplankton may have a smaller fraction of their gene con-

tents encoding H2O2 and •NO production. In contrast, loss of function mutations on enzymes

that scavenge H2O2 and •NO would be more deleterious in large cells than in smaller cells [83,

84].

Hypothesis 3 Flagellated phytoplankton have a larger fraction of their total gene content

encoding H2O2 and •NO production, and a smaller fraction of their total gene content

encoding H2O2 and •NO scavenging. Increased motility in flagellated cells allows movement

away from cytotoxic levels of H2O2 and •NO, possibly complementing scavenging.

Hypothesis 4 Colony forming phytoplankton have a smaller fraction of their total gene

content encoding H2O2 and •NO production, and a larger fraction of their total gene con-

tent encoding H2O2 and •NO scavenging. Cell spacing in colony forming phytoplankton is so

small that the diffusional spheres of H2O2 or •NO diffusing outwards from cells overlap with
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nearby cells [88], thereby shifting the requirements to maintain homeostasis within cells of a

colony.

Hypothesis 5 Pennate Diatoms allocate a larger fraction of their total gene content to

H2O2 and •NO production, and a smaller fraction of their total gene content to H2O2 and
•NO scavenging than do Centric Diatoms. Pennate diatoms have a small minimum radii

even at large biovolumes due to their elongated shape [89]. This cell shape of pennate diatoms

allows for more diffusion of H2O2 and •NO across the cell membrane due to the shorter mean

diffusion paths to the cell surface and high surface area to volume ratio. To maintain homeo-

stasis, pennate diatoms may have a larger fraction of their total gene content for H2O2 and
•NO production compared to centric diatoms. In contrast, pennate diatoms may have a

smaller fraction of their gene content for H2O2 and •NO scavenging, compared to centric

diatoms.

Our work analyzed the fraction of the total genes in a genome or transcriptome associated

with the metabolism of a particular ROS. The presence or absence of genes encoding specific

ROS metabolizing enzymes may be caused by genetic drift, or may relate to a selective advan-

tage linked to other metabolites of the same enzyme, rather than an enzymatic role in ROS

metabolism, per se. Furthermore, the presence of a gene in a genome does not necessarily

mean the encoded enzyme will be active, and closely related enzymes may mediate different

activities in different organisms. The influence of non-enzymatic pathways such as carotenoids

or tocopherols [42, 90, 91] likely affect the hypotheses listed above, but were beyond the frame

of this study.

Methods

Data dictionary

S1 Table contains a data dictionary of variable names used in our analysis, their definitions

and locations in code and data objects.

Bioinformatic pipeline

We downloaded Genomes and/or Transcriptomes of 146 diverse marine phytoplankton (S3

Table) from the National Center for Biotechnology Information (NCBI) [92]; Joint Genome

Institute (JGI) [93, 94]; iMicrobe [95], European Nucleotide Archive (ENA) [96]; pico-PLAZA

[97], 1000 Plants (1KP) [98]; and the Reef Genomics Database [99] (Fig 1).

We implemented an automated pipeline using Snakemake [100] to pass gene sequences

from downloaded genomes or transciptomes, in.fasta format, to eggNOG-Mapper 2.0.6 [101,

102] and then used the DIAMOND algorithm [103] and the eggNOG 5.0 database [104], to

annotate potential orthologs in each analyzed genome or transcriptome, using the following

parameters: seed_ortholog_evalue = 0.001, seed_ortholog_score = 60, tax_scope = “auto,”

go_evidence = “non-electronic,” query_cover = 20 and subject_cover = 0. The annotation gen-

erated for each gene model included (when available): the name of the matching ortholog

(coded by eggNOG as ‘seed_eggNOG_ortholog’); E-value (coded by eggNOG as ‘seed_ortho-

log_evalue’); Score (coded by eggNOG as ‘seed_ortholog_score’); EC number (coded by egg-

NOG as ‘EC’); Kegg Orthology (KO) number (coded by eggNOG as ‘KEGG_ko’); Kegg

Pathway (coded by eggNOG as ‘KEGG_Pathway’); Kegg Module (coded by eggNOG as

‘KEGG_Module’); Kegg Reaction (coded by eggNOG as ‘KEGG_Reaction’); Kegg Reaction

Class (coded by eggNOG as ‘KEGG_rclass’); the predicted protein family (coded by eggNOG

as ‘PFAMs’); Gene Ontology (GO) annotation (coded by eggNOG as ‘Gos’); as well as a

description from eggNOG of the source organism of the matching ortholog (coded by egg-

NOG as ‘best_og_desc’). Note that comparison of sequences to the eggNOG 5.0 database
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generates non-supervised orthology annotations, and is subject to error if the underlying egg-

NOG annotation was inaccurate, or for functionally divergent orthologous gene sequences.

The output of automatically annotated orthologs, from each genome or transcriptome, from

the bioinformatic pipeline was compiled into one file CombinedHits.csv (to be submitted to

the DRYAD database to support alternate analyses) (Fig 1).

Overview of analysis of annotated genes

CombinedHits.csv was imported into a data frame (coded as ‘CombinedHits’) for analysis

using R [105] running under RStudio [106], using the ‘tidyverse’ [107], ‘broom’ [108],

‘magrittr’ [109], ‘dplyr’ [110], ‘rcompanion’ [111], ‘gmodels’ [112], ‘stats’ [105], ‘AER’ [113]

and ‘smatr’ [114] packages, and the ‘logit2prob’ function [115]. Graphics and tables were gen-

erated using the ‘ggplot2’ [116], ‘cowplot’ [117], ‘glue’ [118], ‘kableExtra’ [119], ‘corrplot’

[120], ‘ggfortify’ [121, 122], and ‘ggforce’ [123] packages (Fig 1). Formatted outputs were gen-

erated from Rmarkdown files using the ‘knitr’ [124–126] and ‘bookdown’ [127] packages.

In parallel we assembled metadata from the literature and culture collection databases for

each phytoplankter for which we obtained a genome or transcriptome; including the cell radii

in μm from 100% of organisms (S1 Fig); colony formation for 84% of organisms; cell shape

from diatoms from 100% of diatoms; presence or absence of flagella as an index of potential

motility from 100% of organisms; the genome size from all genomes; the total number of pre-

dicted gene models from 97% of organisms; and the total number of nuclear genes encoding

ribosomal components from 100% of organisms (S3 Table); all stored in CellGenomeMetrics.

csv (submitted to the DRYAD database to support alternate analyses; doi.org/10.5061/dryad.

kh1893284) (Fig 1). For organisms for which only transcriptomes were available, we only

included datasets for which the total number of detected different transcripts was available, as

a proxy for the total number of predicted genes. Strains of brackish origin were included but

we did not include obligate freshwater strains in our analyses.

Citations were managed using the Zotero (www.zotero.org) open access reference manager

connected to Rstudio using the ‘citr’ [128] package. The Zotero library of citations for this

paper is available at (https://www.zotero.org/groups/2333131/ros_phytoplankton).

Fig 1. Summary flowchart of methods.

https://doi.org/10.1371/journal.pone.0284580.g001
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We compared the Enzyme Commission Number (EC number) from CombinedHits to the

BRENDA enzyme database [129] to identify enzymes annotated by BRENDA as ‘natural prod-

uct’ or ‘natural substrate’ for H2O2, O2
•− or •NO in vivo (S2 Table; Fig 1). We then used the EC

Number to filter ‘CombinedHits’ to generate a subset containing only those orthologs encoding

enzymes directly mediating metabolism, Production or Scavenging, of H2O2, O2
•− and •NO.

From the ‘CombinedHits’ data frame, we filtered out some enzymes where the BRENDA

annotations of ‘natural product’ or ‘natural substrate’ was questionable, in particular:

• Superoxide oxidase (EC:1.10.3.17) carries a BRENDA annotation of ‘natural product’ for O2
•

−, despite the BRENDA citation stating that O2
•− production from superoxide oxidase was

only documented in vitro with an excess of ubiquinone [130].

• D-amino-acid oxidase was removed from counts of genes encoding H2O2 production, as the

enzyme does not produce H2O2 in vivo [131].

• Bacterial non heme ferritin is listed under H2O2 production and scavenging as it produces

H2O2 in the first of a two-step reaction and scavenges H2O2 in the second step [132].

From the subset of ‘CombinedHits’ of enzymes annotated for ROS metabolism, we grouped

orthologs together by EC number and their Kegg Orthology number (KO number) and deter-

mined the occurrences of individual orthologs encoding each EC number, or KO number

when EC number was not available, in a given organism. We merged this data subset with

CellGenomeMetrics.csv to generate a dataset of genes encoding ROS metabolizing enzymes, as

defined by the EC or KO number, along with characteristics of the source organism, combined

into ‘MergedData.’ From the ‘CombinedHits’ data frame, we extracted and counted all genes

annotated by eggNOG as ribosomal (Genes with the GO annotation ‘GO:0005840‘; coded as

Ribosome_count), which we subsequently use as a proxy for housekeeping genes.

H2O2, O2
•− and •NO differ in reactivity, stability, diffusion distance, effects on biomolecules

and roles in cell signaling (Table 1). We therefore generated the total gene counts coding for

the production or scavenging of each different ROS in a given organism, which were used to

generate Poisson or Quasi-Poisson regressions (Fig 1). For •NO, we also ran Binomial proba-

bility models to infer the cell size at which organism has an equal probability of having (or not

having) the genomic capacity to encode nitric oxide production or scavenging. These pres-

ence/absence analyses were not run for H2O2 and O2
•− as all eukaryotic organisms either ubiq-

uitously had the genomic capacity to scavenge H2O2 and O2
•−; and to produce H2O2; whereas

no organism had specific genomic capacity to produce O2
•−.

Data validation & justification of statistical analyses

Data from both genomes and transcriptomes were used in this analysis to gain wider represen-

tation from more taxa (S1 Fig). Data from the taxa with the largest radii were derived wholly

from transcriptomes. Aside from the prokaryote genomes, sourced solely from within the 45˚

north south latitude band, the sampled phytoplankton did not exhibit taxonomic biases in

source latitude of isolation, but were primarily coastal (S2 Fig). For 40 organisms we had both

genomic and transcriptomic data, which we used to test assumptions on data distributions (S3

Fig). As expected, data coverage from paired genomes and transcriptomes derived from the

same organism correlated well. Therefore, both genomic and transcriptomic data were avail-

able from the same organism, we used genomic data in subsequent analyses (S3 Table), but we

used data from transcriptomes when genomes were not available. We validated the gene anno-

tations generated by the snakemake bioinformatic pipeline by comparing the total number of

genes encoding ROS metabolism data from a subset of ‘CombinedHits.csv’ to the total number
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of genes encoding ROS metabolism data from a manually annotated dataset generated during

a pilot project (S3 Fig) [133, 134].

As expected, S4 Fig shows a strong correlation (Correlation of 0.87, p = 1.6×10−49) between

manually generated ‘ROSGene_count’ and the automated ‘ROSGene_count’ from the snake-

make pipeline.

S5 Fig shows that the frequencies of counts of genes encoding the metabolism of O2
•−, H2O2

or •NO within an organism are not normally distributed (Shapiro-Wilk Test [135] with a p-value

of 6.4×10−30 for O2
•− scavenging, 9.4×10−24 for H2O2 production, 5×10−25 for H2O2 scavenging,

1.2×10−18 for •NO production and 1.5×10−30 for •NO scavenging). The frequencies of gene counts

instead follow Poisson distributions. Therefore, for subsequent analyses we used Poisson or

Quasi-Poisson regressions to compare the counts of genes that encode the production or scaveng-

ing of O2
•−, H2O2 or •NO within an organism to log10 of the median cell radius in μm. Code used

to produce the Poisson and Quasi-Poisson models is on https://github.com/FundyPhytoPhys/

ROS_bioinfo/tree/master/ROSGenomicPatternsAcrossMarinePhytoplankton.

Quasi-Poisson regressions were used when the Poisson regression was over-dispersed

(dispersion > 1, p< 0.05) as determined by the ‘AER’ package [113]. A Poisson regression fol-

lowed by a chi-squared test, or a Quasi-Poisson regression followed by an F-test, was used to

obtain p-values [136], with an alpha value of�0.05 as the threshold for statistical significance

of regressions; and a pseudo-R2 was calculated using the McFadden R2 method [137].

The total number of genes in each organism increased with the median cell radius, and also

varied among the taxonomic lineages (coded as ‘Phylum’) (Fig 2). Taxonomic lineage, in turn,

interacts strongly with the median cell radius. For our analyses, we sought to detect effects of

cell radius upon the fraction of total genes encoding ROS metabolism. We therefore included

an offset of the total number of genes in the organism in the Poisson or Quasi-Poisson regres-

sions, which is equivalent to normalizing the number of genes encoding the production or

scavenging of H2O2, O2
•− or •NO, to the total number of genes in the organism (‘GeneModel_-

count’). We thereby offset the general increase in ‘GeneModel_count’ with increasing the

median cell radius. Because of the strong interaction between the median cell radius and taxo-

nomic lineage (S1 Fig), we did not include Phylum as a co-variate in our subsequent regres-

sions of normalized gene counts vs. median cell radius. Thus, we did not analyze specific

influences of Phylum upon gene counts for ROS metabolism. Poisson or Quasi-Poisson

regressions were run both with or without ‘Colony’ and ‘Flagella’ as co-variates.

The total number of ribosomal genes did not increase with median cell radius, but did vary

with taxa (S6 Fig). Therefore, we also normalized the number of genes encoding the produc-

tion or scavenging of H2O2, O2
•− or •NO, to the total number of ribosomal genes in the organ-

ism (‘Ribosome_count’), as a proxy for housekeeping genes. Because median cell radius and

taxonomic lineage did not interact in this plot, we included Phylum, or ‘Colony’ and ‘Flagella,’

as co-variates in our Poisson or Quasi-Poisson regressions of normalized ribosomal gene

counts vs. median cell radius.

To further investigate possible influences of colony formation, the presence of flagella or

diatom cell shape (pennate or centric), independent of cell size, upon the fraction of genes that

encode the metabolism of H2O2, O2
•− or •NO, we used a Wilcoxon test [138] after binning

data across all diatom sizes.

Results and discussion

Superoxide

Although there are enzymes that specifically produce O2
•− [139], in the marine phytoplankton

genomes and transcriptomes that we analyzed, we did not detect any genes that encode for
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such enzymes (S2 Table), based on the BRENDA annotation. It is however worth noting the

presence of genes annotated as encoding NADPH Oxidase (NOX) in some phytoplankton

genomes. NOX can produce either H2O2 or O2
•− depending on the NOX isoform. NOX is

included in our analyses as a H2O2 producer, in accordance with the BRENDA annotation of

the enzyme (S2 Table). Further analyses of the detected NOX isoforms might identify whether

they include isoforms that produce O2
•−. Sequences that are similar to Glutathione Reductase

(GR) have been documented to produce enzymes that produce extracellular O2
•− in the diatom

Thalassiosira oceanica [139]. We found sequences annotated as GR across all phytoplankton

genomes (S4 Table), which likely include genes encoding enzymes producing O2
•−. Phyto-

plankton may need to maintain working extracellular concentrations of O2
•−, since decreasing

the extracellular concentration of O2
•− can hinder cell growth [48]. [48] further explains that

the downregulation of Superoxide Dismutase (SOD, EC:1.15.1.1) genes at peak light levels by

Prochlorococcus [140] may allow Prochlorococcus to maintain ‘working levels’ of extracellular

O2
•−. Beyond putative enzymatically mediated production of O2

•−, non-enzymatic processes

Fig 2. Comparison of log10 of the total number of genes in an organism (‘log_GeneModels_count’) to log10 of the median cell radius in μm

(‘log_Radius_um’). Colour corresponds to the taxonomic lineage (‘Phylum’), whereas symbol shape corresponds to the source of the data, whether

Genome or Transcriptome (‘Ome’). Citations for data sources are in S3 Table.

https://doi.org/10.1371/journal.pone.0284580.g002
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associated with cells can also produce O2
•− to variable extents, notably from side-reactions of

electron transport [38, 141, 142] particularly under stress conditions.

Given that the O2
•− is poorly diffusible across membranes, intracellularly produced O2

•−

has to be scavenged to limit detrimental reactions of O2
•− [143]. As a result, the analyzed phy-

toplankton universally maintain genomic capacity encoding the ubiquitous O2
•− scavenging

enzyme SOD (S8 Fig), with the exception of a single transcriptome fromMicromonas polaris.
Genes annotated as encoding the enzyme Superoxide Oxidase (SOO, EC:1.10.3.17) were pres-

ent in a few diatom species (Leptocylindrus danicus, Chaetoceros curvicetus and Thalassiosira
minuscula CCMP1093) and prokaryotes (Crocosphaera spp.). Genes encoding the enzyme

Superoxide Reductase (SOR, EC:1.15.1.2) were detected in some diatoms (Pseudo-nitzschia
fradulentaWWA7 and Seminavis robustaD6), and in the haptophyte Pleurochrysis carterae
CCMP456. BLAST searches support these annotations of genes for SOO and SOR in the

genomes of some phytoplankters. These results should be confirmed by enzyme assays, to

identify if the genes indeed encode active enzymes. Finer trends in genomic allocations to O2
•−

scavenging may emerge among the metallo-forms of SOD [144]. For example, in pilot runs

discriminating among SOD metallo-forms we found that pico-prasinophytes encode Mn-SOD

instead of the Fe-SOD encoded in genomes from larger green algal phytoplankters (Data not

visualized) [133].

With increasing cell radius, eukaryotic phytoplankton have a smaller fraction of their total

genes encoding scavenging of O2
•− (Fig 3, Blue line, Slope = -2.1×10−1 ± 7.1×10−2, p-

value = 4.2×10−3, pseudo-R2 = 0.087). The negative slope does not support our Hypothesis 1

that phytoplankton do not differentially allocate a changing fraction of their total gene content

to O2
•− scavenging with increasing cell size. Including ‘Flagella’ and ‘Colony’ as co-variates in

the regression results, however, in a slope that is not statistically different from zero (Fig 3,

Black line, Slope = -6.7×10−2 ± 6.8×10−2, p-value = 3.3×10−1), driven by the influence of ‘Fla-

gella’ (p-value = 3.7×10−2) but not ‘Colony’ (p-value = 8.6×10−1). O2
•− metabolism in phyto-

plankton appears to be mediated by a nearly fixed set of core genes that do not change with

increasing total gene count, thus the fractional gene allocation to O2
•− decreases as cell radius,

and the co-varying total gene count increases. Therefore, gene dosage does not emerge as a fac-

tor in phytoplankton O2
•− metabolism. With increasing cell radius, eukaryotic phytoplankton

have no cell-size associated difference in genes encoding superoxide scavenging, when normal-

ized to total ribosomal genes, suggesting that as a fraction of housekeeping genes, cells do not

increase their genomic capacity to scavenge superoxide, consistent with our hypothesis 1

(Data not visualized, Slope = -2.4×10−1 ± 2.5×10−1, p-value = 3.3×10−1).

Consistent with the significant influence of flagella on the regressions vs. median cell radius

(Fig 3), flagellated phytoplankton, irrespective of size, have a smaller proportion of their total

gene content encoding O2
•− scavenging (Fig 4, p-value = 4.3×10−3), than do non-flagellated

phytoplankton. Similarly, irrespective of size, flagellated phytoplankton have a smaller ratio of

genes encoding O2
•− scavenging to their total ribosomal genes (Data not visualized, p-

value = 3.2×10−10). This suggests that cellular motility contributes to phytoplankton homeosta-

sis of O2
•−, possibly by supporting escape from localized extracellular pockets of O2

•−. This

decrease in proportional allocation to O2
•− scavenging is also arithmetically consistent with

the difference in the number of total genes between flagellated and non-flagellated phytoplank-

ton, whereby flagellated phytoplankton have more total genes.

Pennate and centric diatoms have similar fractions of their genomes encoding O2
•− scav-

enging (p-value = 9.7×10−1), as well as similar ratios of O2
•− scavenging genes to their house-

keeping ribosomal genes (p-value = 8.1×10−1) (Data not visualized). Our results support our

hypothesis that differential diffusional exchange across diatoms of different shape does not

influence the fraction of total gene content encoding O2
•− scavenging enzymes, because O2

•−
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diffusion outwards is limited by the cell membrane, regardless of cell shape (Hypothesis 1).

Differences between genomic patterns of pennate and centric diatoms may arise when com-

paring metallo-forms of SOD, noting that [145] found that pennate diatoms transcribe Cu/Zn-

SOD but not Fe-SOD, whereas centric diatoms transcribe Fe-SOD more frequently than they

transcribe Cu/Zn-SOD.

Hydrogen peroxide

All prokaryotic (S9 Fig) and eukaryotic (S10 Fig) phytoplankton, with the exception of a single

transcriptome from the prasinophyteMicromonas polaris, have genes encoding H2O2 produc-

ing enzymes, as they all carry gene(s) encoding the ubiquitous enzyme Superoxide Dismutase.

Genes encoding oxidases producing H2O2 include copropophyrinogen oxidase, found across

all eukaryotic and prokaryotic phytoplankton, with the exception of one transcriptome. Genes

encoding thiol oxidase and acyl CoA oxidase are also found in nearly all eukaryotic phyto-

plankton, with the exceptions of three transcriptomes. Genes encoding L-aspartate oxidase are

found in nearly all prokaryotes, and all green algae, but are nearly absent from other eukaryotic

Fig 3. Comparison of log10 (Total number of genes encoding O2•− metabolizing enzymes (‘SupOx_count’) normalized to the total number of genes

present in each organism (‘GeneModels_count’)) vs. the log10 (median cell radius in μm (‘log_Radius_um’)). Poisson (solid line) or Quasi-Poisson (dashed

line) regressions fitted to data ± Standard Error (dotted line). Regressions were run with (black line) or without (blue line) ‘Colony’ and ‘Flagella’ as co-variates.

Selected prokaryote genomes are presented for comparison, but excluded from the presented regressions. Symbol color corresponds to taxon lineage

(‘Phylum’).

https://doi.org/10.1371/journal.pone.0284580.g003

PLOS ONE Reactive Oxygen Species metabolism across phytoplankton genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0284580 April 25, 2023 11 / 28

https://doi.org/10.1371/journal.pone.0284580.g003
https://doi.org/10.1371/journal.pone.0284580


taxa. Sarcosine oxidase is not present in small diatoms and small green algae, but is present in

nearly all dinoflagellates and haptophytes. (S)-2-hydroxy-acid oxidase (whose EC number

includes glycolate oxidase) is found in most eukaryotic phytoplankton, but rarely in

dinoflagellates.

Most prokaryotic phytoplankton (S9 Fig) and all eukaryotic (S10 Fig), have genes encoding

H2O2 scavenging enzymes. Some strains of Prochlorococcus and Synechococcus have lost all

genomic capacity to scavenge H2O2, and appear to rely on co-occurring hosts for H2O2 scav-

enging [83, 84, 87].

The absence of catalase from most analyzed cyanobacterial genomes supports [146] who

analyzed 44 different cyanobacterial genomes and found that only Nostoc punctiforme
PCC73102 retained a full gene encoding catalase. In our analyses, only Synechococcus elongatus
PCC11802 maintained a catalase encoding gene (S9 Fig). In the greens, catalase has been lost

from the smaller prasinophytes but is maintained in the larger greens (S10 Fig). The loss of cat-

alase from smaller green algae may be evidence of the Black Queen Hypothesis in action [83],

in that H2O2 can passively diffuse out of the smaller green algae but diffuses less out of larger

Fig 4. Comparison of total number of genes encoding O2•− scavenging enzymes (‘SupOx_count’) normalized to

the total number of genes present in each organism (‘GeneModels_count’)) vs. the presence or absence of flagella

in the organism. Symbol color corresponds to taxon lineage (‘Phylum’). Notch spans ± standard error of the median.

Box spans median ± 1 quartile of the data. Whiskers span the range excluding outliers in the data. Citations for data

sources can be found in S3 Table.

https://doi.org/10.1371/journal.pone.0284580.g004
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green algae. Loss of function mutations in catalase encoding genes in small algae are therefore

less deleterious than they would be to large green algae. Catalase, with a KM of ~220 mM, may

be poorly retained because the cells maintain some genomic capacity to scavenge H2O2 using

the enzymes ascorbate peroxidase, glutathione peroxidase and Cytochrome C peroxidase (S10

Fig), with KM in the low μM range [146].

Our results support an earlier suggestion that bigger genomic capacity for H2O2 scavenging

in Synechococcus compared to Prochlorococcus is a result of the larger size in Synechococcus
compared to Prochlorococcus [84] (S9 Fig). It is however important to note the vast differences

between prokaryotic and eukaryotic phytoplankton, with most eukaryotic phytoplankton,

regardless of lineage, maintaining the genomic capacity to produce ascorbate peroxidase, glu-

tathione peroxidase and Cytochrome C peroxidase (S10 Fig). Peroxidases are involved in path-

ways beyond simple ROS scavenging, including the Halliwell-Asada cycle for ascorbate

peroxidase [147]. Ostreococcus, the smallest prasinophyte has a radius of 0.5 μm, comparable

to that of the prokaryote Synechococcus (S3 Table), and would therefore share a similarly short

diffusion path length. Nevertheless Ostreococcus, in common with other eukaryotes, retains

genomic capacities to produce ascorbate peroxidase, glutathione peroxidase and cytochrome c

peroxidase, which may thus reflect the cost of being eukaryotic (S10 Fig).

With increasing cell radius, eukaryotic phytoplankton have a smaller fraction of their total

genes encoding the production of H2O2 (Fig 5, Blue line, Slope = -3.4×10−1 ± 5×10−2, p-

value = 9.6×10−10, pseudo-R2 = 0.34). Including ‘Flagella’ and ‘Colony’ as co-variates did not

significantly alter this pattern (Black line, ‘Flagella’ p-value = 8.4×10−1, ‘Colony’ p-

value = 4.7×10−1). The pattern of a smaller fraction of total genes for H2O2 production with

increasing cell radius supports our Hypothesis 2 that larger phytoplankton counter decreasing

diffusional loss of H2O2 out of cells through a lower genomic capacity for H2O2 production,

whereas losses of genes encoding H2O2 producing enzymes are more costly to small phyto-

plankton (Fig 5). [7] found that a major influence upon the capacity for production of H2O2 is

whether or not the organism can form blooms, with bloom forming species producing more

H2O2. The ability to form blooms was not analyzed in our data as we did not find systematic

information on potentials for bloom formation across taxa.

With increasing cell radius, eukaryotic phytoplankton also have a smaller fraction of their

total genes encoding the capacity to scavenge H2O2 (Fig 5, Blue line, Slope = -3.2×10−1 ±
5.6×10−2, p-value = 1.4×10−7, pseudo-R2 = 0.26). Including ‘Flagella’ and ‘Colony’ as co-vari-

ates did not influence the negative slope of the fraction of total genes encoding H2O2 scaveng-

ing with increasing median cell radius (Fig 5, Black line, ‘Flagella’ p-value = 4.1×10−1, ‘Colony’

p-value = 1.6×10−1). A parallel analysis focusing only on small phytoplankton such as pico-

cyanobacteria and pico-prasinophytes might yield different results as more such genomes are

sequenced, since [148] found that H2O2 added to seawater at a concentration of 1.6 mg L-1 did

not affect cells with a radius larger than 1 to 1.5 μm, but differentially harmed the picoprasino-

phyteMicromonas pusilla.

Because median cell radius co-varied with Taxa, we generally excluded Taxa as a co-variate

from our regressions, in order to focus on any cross-taxon patterns driven by changing median

cell radius. Nevertheless, representatives of the Ochrophyte Phylum alone spanned more than

an order of magnitude in median cell radius. We therefore tested whether the log10(total num-

ber of genes encoding the metabolism of O2
•−, H2O2 or •NO) varied with the log10 (median

cell radius) across the Ochrophytes alone (S7 Fig). We found that across Ochrophytes, the frac-

tion of total genes encoding the production of H2O2 decreased with increasing cell radius

(Slope = -1.6×10−1 ± 9.4×10−2), although the p-value for the regression was only 1×10−1). This

marginal decrease in the total number of genes encoding H2O2 production with increasing

median cell radius in Ochrophytes again tends to support our Hypothesis 2, with data from

PLOS ONE Reactive Oxygen Species metabolism across phytoplankton genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0284580 April 25, 2023 13 / 28

https://doi.org/10.1371/journal.pone.0284580


within a single phylum to limit confounding influences of diverse evolutionary histories and

cell biologies upon patterns.

H2O2 production (Slope = -3.7×10−1 ± 2×10−1, p-value = 6.7×10−2) and scavenging (Slope

= -3.5×10−1 ± 2.1×10−1, p-value = 1×10−1) allocations were steady with increasing cell size, rel-

ative to the ribosomal housekeeping gene proxy. But, genes for H2O2 production and scaveng-

ing are diluted by increasing total gene counts with increasing cell size.

Pennate and centric diatoms do not show statistically significant differences in the fraction

of their total gene content encoding the production (p-value = 1.9×10−1) nor the scavenging of

H2O2 (p-value = 9.6×10−2). Pennate and centric diatoms also do not show statistically signifi-

cant differences in the ratio of genes encoding production (p-value = 3.3×10−1) nor the scav-

enging of H2O2 (p-value = 3.9×10−1), normalized to their ribosomal gene content encoding

H2O2. These results do not support our Hypothesis 5 that pennates have more genes encoding

H2O2 producing enzymes due to their higher surface area to volume ratio (Data not

visualized).

Fig 5. Comparison of log10 (Total number of genes encoding H2O2 metabolizing enzymes (‘HyPe_count’) normalized to the total number of genes

present in each organism (‘GeneModels_count’)) vs. the log10 (median cell radius in μm (‘log_Radius_um’)). Poisson (solid line) or Quasi-Poisson (dashed

line) regressions fitted to data ± Standard Error (dotted line). Regressions were run with (black line) or without (blue line) ‘Colony’ and ‘Flagella’ as co-variates.

Selected prokaryote genomes are presented for comparison, but excluded from the presented regressions. Symbol color corresponds to taxon lineage

(‘Phylum’). Citations for data sources are in S3 Table.

https://doi.org/10.1371/journal.pone.0284580.g005
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Nitric oxide

In the genomes and transcriptomes that we analysed, Nitric Oxide Synthase (NOS,

EC:1.14.13.39), although often absent, was the most frequently occurring •NO producing

enzyme encoded (S11 Fig), but was not encoded, or at least not annotated, among prokaryotic

phytoplankton (Data not visualized).

Nitric Oxide Dioxygenase (NOD, EC:1.14.12.17) was the most frequently occurring of the
•NO scavenging enzymes (S11 Fig). NOD sequences were identified in some eukaryotes, but

were either not annotated, or not present in Prochlorococcus, most green algae and most cen-

tric diatoms. A NOS-like sequence that also has Nitric Oxide Dioxygenase-like function [149]

has recently been identified in Synechococcus, which might encode NOD activity in some

strains lacking annotated NOD sequences.

With increasing cell radius eukaryotic phytoplankton do not vary in the fraction of total

genes encoding the capacity to produce •NO (Fig 6, Blue line, Slope = -2.5×10−1 ± 1.7×10−1, p-

value = 1.5×10−1). We re-ran the Quasi-Poisson, excluding those phytoplankton that

completely lack genes encoding enzymes for •NO production (NitOx_count = 0, points along

Fig 6. Comparison of log10 (Total number of genes encoding •NO metabolizing enzymes (‘NitOx_count’) normalized to the total number of genes

present in each organism (‘GeneModels_count’)) vs. the log10 (median cell radius in μm (‘log_Radius_um’)). Poisson (solid line) or Quasi-Poisson (dashed

line) regressions fitted to data ± Standard Error (dotted line). Regressions were run with (black line) or without (blue line) ‘Colony’ and ‘Flagella’ as co-variates.

Selected prokaryote genomes are presented for comparison, but excluded from the presented regressions. Symbol color corresponds to taxon lineage

(‘Phylum’).

https://doi.org/10.1371/journal.pone.0284580.g006
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the x-axis), which resulted in a decreasing slope with increasing cell radius. Thus, those phyto-

plankton with any detected capacity to produce •NO indeed have a smaller fraction of their

total genes encoding •NO production with increasing radius (Fig 6, Blue line, Slope =

-3.7×10−1 ± 1.1×10−1, p-value = 8.6×10−4, pseudo-R2 = 0.13). Including ‘Flagella’ and ‘Colony’

as co-factors for the regression that solely looks at phytoplankton with the genomic capacity to

produce •NO resulted in a slope that is no longer significantly different from zero (Fig 6, Black

line, Slope = -2.5×10−1 ± 1.4×10−1, p-value = 7×10−2), driven by the influence of ‘Flagella’ (p-

value = 1.4×10−4), but not ‘Colony’ (p-value = 1.8×10−1).

With increasing cell radius, eukaryotic phytoplankton do not vary in the fraction of their

total genes encoding the capacity to scavenge •NO, Quasi-Poisson regression slope not signifi-

cantly different from zero (Fig 6, Blue line, Slope = 1.3×10−1 ± 1.8×10−1, p-value = 4.7×10−1).

Non-enzymatic paths contribute to intracellular and extracellular •NO production [150],

and may explain the absences of genes encoding •NO production from some genomes across

taxonomic lineages. Alternately, •NO homeostasis may be achieved in some lineages by regu-

lating the active cellular uptake and release of intracellular •NO, as has been recently demon-

strated in humans [151]. Although NOD sequences have only been identified from

phytoplankton through meta-transcriptomic analyses, in diatoms, haptophytes and dinoflagel-

lates [152], there is limited understanding as to what may contribute to the active removal of
•NO, and the lack of •NO scavenging genes across multiple phytoplankters. More research is

needed on possible contributions of NOD to the active removal of •NO, as well as the NOS

sequences detected in Synechococcus that also display NOD-like activity [149]. Perhaps the low

toxicity of •NO does not warrant the active removal of •NO as long as the concentration does

not exceed the toxic threshold. This explanation is plausible given that Platymonas helgolan-
dica, Platymonas subcordiformis, Skeletonema costatum, Gymnodinium sp., and Prorocentrum
donghaiense showed optimum growth in the presence of •NO concentrations between 10−9

and 10−6 mol L-1 [153], which are higher than the concentrations found in the ocean (Table 1).

A binomial model comparing the presence or absence of genes that encode the production

of •NO shows no cell size effect (slope = -3.5×10−1, p = 1.4×10−1). Including ‘Flagella’ as a co-

variate does not alter these results, but does show that flagellated phytoplankton have higher

likelihood of presence of •NO production than do non-flagellated phytoplankton (S12 Fig,

p = 5.6×10−5). Including ‘Colony’ as a co-variate does not show a cell size effect, nor a differ-

ence in the likelihood of •NO production between colony and non-colony forming phyto-

plankton (p = 1.3×10−1).

In contrast, larger phytoplankton are more likely to have a gene encoding •NO scavenging

(slope = 1.1×100, p = 2×10−4). This trend is not influenced by flagella (p = 1.9×10−1) nor colony

formation (p = 1.3×10−1). This pattern supports our hypothesis that larger, diffusionally lim-

ited cells, have a stronger requirement for •NO scavenging (Hypothesis 2).

Most centric diatoms carry genes annotated as encoding •NO producing enzymes, whereas

most pennate diatoms do not (p-value = 6.2×10−3) when normalized to total genes, and when

normalized to ribosomal genes (p-value = 1.1×10−2). In contrast, most centric diatoms lack

genes annotated as encoding •NO scavenging enzymes, whereas most pennate diatoms carry

those genes (p-value = 3.8×10−5) when normalized to total genes, and p-value = 2.4×10−5

when normalized to ribosomal genes) (Fig 7).

The larger fractional gene allocation to •NO production, and smaller fraction of genes that

encode •NO scavenging enzymes, in centric diatoms (Fig 7) counters our hypothesis that diffu-

sion from pennate diatoms would drive gene allocations in favor of •NO production (Hypothe-

sis 5). Given the strong contrast in annotated •NO metabolism genes, it is likely that •NO has

regulatory or signaling roles that vary systematically between pennate and centric diatoms,

outside any diffusional influences. For example, •NO inhibits diatom adhesion to substrate

PLOS ONE Reactive Oxygen Species metabolism across phytoplankton genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0284580 April 25, 2023 16 / 28

https://doi.org/10.1371/journal.pone.0284580


[72, 154]. Pennates are more likely to grow adhered in biofilms [155], which may explain the

striking differences in total gene allocation to •NO production and scavenging. Alternately,

[156] identified putative NOS sequences in the transcriptomes of three pennate diatom species

(Pseudo-nitzschia arenysensis, Pseudo-nitzschia delicatissima and Pseudo-nitzschia multi-
striata), so it is possible the apparent lack of •NO producing sequences in pennates is due to

errors in the unsupervised annotations from eggNOG.

Fig 7. Comparison of total number of genes encoding •NO metabolizing enzymes (‘NitOx_count’) normalized to the total number of genes present

in each diatom (‘GeneModels_count’) vs. the growth form of the diatom (‘PennateCentric’). Symbol color corresponds to taxon lineage (‘Phylum’).

Notch spans ± standard error of the median. Box spans median ± 1 quartile of the data. Whiskers span the range excluding outliers in the data. Citations

for data sources can be found in S3 Table.

https://doi.org/10.1371/journal.pone.0284580.g007
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Summary

We analyzed the fractions of the total genes in the genome that are associated with the metabo-

lisms of three major ROS. It is important to note that the content of genes encoding specific

ROS metabolizing enzymes may be caused by genetic drift, or may relate to a selective advan-

tage linked to other metabolites of the same enzymes, rather than an enzyme role in ROS

metabolism, per se. Furthermore, the gene presence or gene count in a genome is only one

influence on the potential activity of the encoded enzyme, and closely related enzymes may

confer different activities in different organisms.

The differential reactivities, diffusion distances, diffusibilities across cell membranes, and

roles in cell signaling of H2O2, O2
•− and •NO (Table 1) influence genomic allocation patterns

for the production and scavenging of these three distinct ROS.

O2
•− has high reactivity, short intracellular and extracellular lifetimes and limited cell mem-

brane crossing. We did not find genes specifically encoding O2
•− production in eukaryotic

phytoplankton genomes. As expected, genes encoding O2
•− scavenging were ubiquitous, but

the fractional gene allocation to O2
•− scavenging decreases as cell radius, and the co-varying

total gene count increases, consistent with a nearly fixed set of core genes scavenging O2
•− that

do not change with increasing gene count in larger cells (Hypothesis 1).

H2O2 has lower reactivity, longer intracellular and extracellular lifetimes and readily crosses

cell membranes. Across eukaryotic phytoplankton, the fraction of the total genes encoding

H2O2 producing and scavenging enzymes decreases with increasing cell radius (partially sup-

ports hypothesis 5). Presence of flagella and colony formation do not appear to influence H2O2

metabolism (contrary to hypotheses 3 & 4)
•NO has low reactivity, long intracellular and extracellular lifetimes and readily crosses cell

membranes. Neither the fraction of the total genes for •NO production nor for scavenging

changed significantly with increasing cell radius, consistent with relatively low cytotoxicity

and roles of •NO in taxonomically diverse regulatory systems (contrary to hypothesis 5). Pen-

nate diatoms frequently lack genes annotated as encoding •NO producing enzymes, whereas

centric diatoms frequently lack genes annotated as encoding •NO scavenging enzymes (con-

trary to hypothesis 5). This finding is not explicable by differential diffusional losses of •NO,

but may reflect distinct roles of •NO in the regulatory systems of diatom lineages.

Supporting information

S1 Fig. Violin plot presenting the range of log10 of the median cell radius in μm (‘log_Ra-

dius_um’) for each taxonomic lineage (‘Phylum’). Point colour corresponds to the source of

the data, whether Genome or Transcriptome (‘Ome’). Violin width indicates the fraction of all

datapoints occurring at a cell radius (‘log_Radius_um’) within a phylum. Citations for data

sources are in S3 Table.

(TIF)

S2 Fig. Longitude and latitude of isolation of analyzed organisms, overlaid on a world map

Point colour corresponds to the taxonomic lineage (‘Phylum’). Ocean colour corresponds

to depth Citations for data sources are in S3 Table. Data used to generate world map produced

from the ‘ggOceanMaps’ R package [157].

(TIF)

S3 Fig. Comparison of paired counts of particular genes encoding ROS production or scav-

enging from the genome (‘ROSGene_count.g’) or transcriptome (‘ROSGene_count.t’)

taken from the same organism. Data was drawn from a subset of analyzed organisms for

which both genome and transcriptome were available. Colour corresponds to the taxonomic
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lineage (‘Phylum’) Points are jittered to avoid overlapping, resulting in blocks around fre-

quently occurring counts. Dashed line is at 1:1 where ‘ROSGene_count.g’ and ‘ROSGen-

e_count.t’ would be equal. Citations for data sources are in S3 Table.

(TIF)

S4 Fig. Comparison of paired counts of particular genes encoding ROS production or scav-

enging from manual and automatic annotations taken from the same organism. Data was

drawn from a subset of genomes and transcriptomes which were both manually and automati-

cally annotated. Colour corresponds to the ‘Gene’ Points are jittered to avoid overlapping,

resulting in blocks around frequently occurring counts. Dashed line is placed at 1:1 where

Manual and Automated counts would be equal. Citations for data sources in S4 Table.

(TIF)

S5 Fig. Histogram of occurrences of number of total genes, in a genome or transcriptome,

(y axis) that code for the production of enzymes that produce or scavenge H2O2, O2•− or
•NO in vivo. Symbol color corresponds to taxon lineage (‘Taxa’).

(TIF)

S6 Fig. Comparison of log10 of the total number of ribosomal genes in an organism (‘log10

(RibosomeCount)’) to log10 of the median cell radius in μm (‘log_Radius_um’). Colour cor-

responds to the taxonomic lineage (‘Phylum’), whereas symbol shape corresponds to the

source of the data, whether Genome or Transcriptome (‘Ome’). Citations for data sources are

in S3 Table.

(TIF)

S7 Fig. Comparison of log10 (Total number of genes encoding H2O2, O2•− or •NO metabo-

lizing enzymes normalized to the total number of genes present in each Ochrophyte) vs.

the log10(median cell radius in μm). Poisson (solid line) or Quasi-Poisson (dashed line)

regressions fitted to data ± Standard Error (dotted line). Regressions were run without (blue

line) ‘Colony’ and ‘Flagella’ as co-variates. Citations for data sources are in S3 Table.

(TIF)

S8 Fig. Summary of O2•− scavenging enzymes encoded within genomes and transcrip-

tomes of eukaryotic phytoplankton analyzedTaxa are ordered from top to bottom along

the left according to increasing median cell diameter within each taxonomic lineage. Sym-

bol colour corresponds to taxonomic lineages (‘Taxa’). Filled data points indicate that the data

obtained from that organism was sourced from a genome, and unfilled data points were

sourced from a transcriptome. The size of the symbol increases with the number of members

of each enzyme found within each genome or transcriptome. Symbol absence means no

sequences known to encode the enzyme family of interest were found in the target genome or

transcriptome. The absence of transcripts encoding SOD from the Micromonas polaris tran-

scriptome is likely due to low expression of SOD at the time that the mRNA was harvested for

sequence analyses.

(TIF)

S9 Fig. Summary of H2O2 metabolizing enzymes encoded within genomes of prokaryotic

phytoplankton analyzed, faceted by whether the enzymes produce or scavenge H2O2. Taxa

are ordered from top to bottom along the left according to increasing median cell diameter

within each taxonomic lineage. Symbol colour corresponds to the genus of the prokaryote.

Filled data points indicate that the data obtained from that organism was sourced from a

genome. The size of the symbol increases with the number of members of each enzyme found

within each genome or transcriptome. Symbol absence means no sequences known to encode
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the enzyme family of interest were found in the target genome or transcriptome.

(TIF)

S10 Fig. Summary of H2O2 metabolizing enzymes encoded within genomes and transcrip-

tomes of eukaryotic phytoplankton analyzed, faceted by whether the enzymes produce or

scavenge H2O2. Taxa are ordered from top to bottom along the left according to increasing

median cell diameter within each taxonomic lineage. Symbol colour corresponds to taxonomic

lineages (‘Taxa’). Filled data points indicate that the data obtained from that organism was

sourced from a genome, and unfilled data points were sourced from a transcriptome. The size

of the symbol increases with the number of members of each enzyme found within each

genome or transcriptome. Symbol absence means no sequences known to encode the enzyme

family of interest were found in the target genome or transcriptome.

(TIF)

S11 Fig. Summary of •NO metabolizing enzymes encoded within genomes and transcrip-

tomes of eukaryotic phytoplankton analyzed, faceted by whether the enzymes produce or

scavenge •NO. Taxa are ordered from top to bottom along the left according to increasing

median cell diameter within each taxonomic lineage. Symbol colour corresponds to taxonomic

lineages (‘Taxa’). Filled data points indicate that the data obtained from that organism was

sourced from a genome, and unfilled data points were sourced from a transcriptome. The size

of the symbol increases with the number of members of each enzyme found within each

genome or transcriptome. Symbol absence means no sequences known to encode the enzyme

family of interest were found in the target genome or transcriptome.

(TIF)

S12 Fig. Comparison of the probability of having the genomic capacity to encode •NO vs.

the log10 (median cell radius in μm (‘log_Radius_um’)). Colony (solid line) or non-colony

(dashed line) regressions fitted to data. Points along the y-axis indicate whether an organism

has flagella (1) or does not have flagella (0).

(TIF)

S1 Table. Variable names, definitions, units, and first location of occurrence in code, used

for our data.

(CSV)

S2 Table. Enzyme commission number, kegg orthology number, enzyme name and ROS

substrate metabolized.

(CSV)

S3 Table. Metadata for each organism.

(CSV)

S4 Table. Comparison of manual and automated gene counts.

(CSV)

S1 File. References for S1 to S4 Tables.

(DOCX)
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