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ABSTRACT Crocosphaera watsonii (hereafter referred to as Crocosphaera) is a key nitrogen
(N) fixer in the ocean, but its ability to consume combined-N sources is still unclear. Using
in situ microcosm incubations with an ecological model, we show that Crocosphaera has
high competitive capability both under low and moderately high combined-N concentra-
tions. In field incubations, Crocosphaera accounted for the highest consumption of ammo-
nium and nitrate, followed by picoeukaryotes. The model analysis shows that cells have a
high ammonium uptake rate (;7 mol N [mol N]21 d21 at the maximum), which allows
them to compete against picoeukaryotes and nondiazotrophic cyanobacteria when
combined N is sufficiently available. Even when combined N is depleted, their capabil-
ity of nitrogen fixation allows higher growth rates compared to potential competitors.
These results suggest the high fitness of Crocosphaera in combined-N limiting, oligotro-
phic oceans heightening its potential significance in its ecosystem and in biogeochemical
cycling.

IMPORTANCE Crocosphaera watsonii is as a key nitrogen (N) supplier in marine ecosystems,
and it has been estimated to contribute up to half of oceanic N2 fixation. Conversely, a
recent study reported that Crocosphaera can assimilate combined N and proposed that
unicellular diazotrophs can be competitors with non-N2 fixing phytoplankton for combined
N. Despite its importance in nitrogen cycling, the methods by which Crocosphaera compete
are not currently fully understood. Here, we present a new role of Crocosphaera as a com-
bined-N consumer: a competitor against nondiazotrophic phytoplankton for combined N. In
this study, we combined in situ microcosm experiments and an ecosystem model to quanti-
tatively evaluate the combined-N consumption by Crocosphaera and other non-N2 fixing
phytoplankton. Our results suggest the high fitness of Crocosphaera in combined-N limiting,
oligotrophic oceans and, thus, heightens its potential significance in its ecosystem and in
biogeochemical cycling.
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Marine phytoplankton contribute about one-half of the global net primary production
and play a key role in regulating global biogeochemical cycles (1). Since phytoplank-

ton are biochemically, metabolically, and ecologically diverse (2–4), understanding the con-
tribution of different phytoplankton groups to ecosystem function is central to the precise
estimation of the global carbon (C) and nitrogen (N) budget and to predicting the biogeo-
chemical impact of future environmental changes (5).

In the oligotrophic subtropical gyres, combined N (defined as N covalently bonded to
one or more elements other than N [6]) limits primary production and controls planktonic
community composition (7–10). Therefore, N2-fixing microorganisms (diazotrophs) are
important as a source of combined N in oligotrophic ecosystems (11, 12). In the subtropic
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oligotrophic ocean, the unicellular diazotroph, Crocosphaera watsonii (2.5 to 6 mm; hereafter
referred to as Crocosphaera), is widely distributed (10, 13–16) in addition to pico-sized
(,3mm) cyanobacteria (e.g., Prochlorococcus and Synechococcus) and picoeukaryotes (17–19).
Earlier studies examined the effect of combined N, such as ammonium (NH4

1) and nitrate
(NO3

2), on metabolic activities and reveal the ability of Crocosphaera to assimilate combined
N (20, 21). As reported from Trichodesmium (22), increasing concentrations of NH4

1 enrich-
ment increases NH4

1 uptake activities and inhibits N2 fixation rates up to;80% (20, 21), while
NO3

2 enrichment did not inhibit N2 fixation rate at any of the tested NO3
2 concentrations (up

to 10mM) (20). When remaining combined-N concentrations in the cultures are at a nanomo-
lar level, Crocosphaera kept fixing N2 (20, 21). Model results indicate that using dissolved inor-
ganic nitrogen (DIN) enables Crocosphaera populations to increase their abundance and
expand their niche (23). These studies proposed that unicellular diazotrophs can be competi-
tors with nondiazotrophic phytoplankton for combined N. However, how Crocosphaera com-
petes for combined N is poorly evaluated. In this study, we combine an in situ microcosm
experiment with N addition at the nanomolar level and model (24) to evaluate the competi-
tiveness of Crocosphaera in an N-limiting environment.

RESULTS
Summary of the experiment. We carried out five nitrogen (N) and phosphorus (P)

addition bioassays (M1 to M5) every 4 days at a station in the subtropical Northwestern Pacific
(12°N, 135°E) from 6 to 25 June 2008 during the MR08-02 cruise on the R/V MIRAI. The north-
ward current was dominant until bioassay M3, while a strong southward current occurred on
days between bioassays M3 and M4. The initial waters were more oligotrophic during M1 to
M3 compared to those during M4 and M5; nutrient concentrations initially were less than
36 nM for ammonium (NH4

1), 7 nM for nitrate plus nitrite (NO3
2 1 NO2

2), and 64 nM for
phosphorus (PO4

32) (see Table S1 in the supplemental material). The lower initial phytoplank-
ton abundance during M1 to M3 than that during M4 and M5 confirms the oligotrophic char-
acteristics of initial water during M1 to M3 (Table S1). Although we performed prefiltration
with a 1-mm polypropylene cartridge filter (Micropore EU; ORGANO) to eliminate the effect of
grazing, water samples contained plankton up to;5mm in size.

Nutrient uptake and fate of enriched DIN. For 3 days of incubation, the phytoplank-
ton community consumed NH4

1 entirely at the end, while NO3
2 was not always consumed

completely (Fig. 1; see also Fig. S1 in the supplemental material). Estimated biomass explains
about half of consumed combined-N sources (Fig. 1, 2A).

The greatest portion of estimated C and N in biomass was found in Crocosphaera (39 to
93% in all N addition incubations) followed by picoeukaryotes (5 to 55% in N addition

FIG 1 Temporal change in NH4
1 and NO3

2 concentrations of experiment M3. (A) NH4
1 concentration in the NH4

1 treatment
exponentially decreased during the experiment down to the detection limit of 6 nM on day 3. (B) NO3

2 concentrations
in the NO3

2 treatment exponentially decreased during the experiment, but enriched NO3
2 was not always entirely

consumed. Error bar shows a standard deviation of triplicate. Temporal change in urea-N concentration is shown in Fig.
S2 in the supplemental material.
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incubations) (Fig. 2; see also Fig. S3 and S4 in the supplemental material). Although the origin
of water mass changed from oligotrophic water to mixed water between experiments M1 to
M3 and M4 to M5 (25), with more Crocosphaera in cell density with higher N2 fixation in the
latter environment (see Tables S1 and S2 in the supplemental material), the dominance of
Crocosphaera as a C and N biomass was observed from all of the experiments. N derived from
N2 fixation was not always sufficient to support the N demand of Crocosphaera, especially in
N amendment (see Fig. S5 in the supplemental material). Estimated N2 fixation supported
0.5 to 12.7% of N demand of Crocosphaera in control and 0.5 to 11.6% in NH4

1 treatment
(Fig. S5), suggesting that Crocosphaera consumed amended N sources. Assimilation of com-
bined nitrogen (NH4

1 and NO3
2), together with N2 fixation by Crocosphaera, has been

reported (20, 21). Although enriched 100 nM NH4
1 was completely consumed (,6 nM;

detection limit on day 3), increases in N biomass of nondiazotrophs for 3 days were limited
to up to 58 nmol L21, again suggesting Crocosphaera took up combined nitrogen.

Model analysis of the data. To quantitatively interpret the observed data, we used
a simple model of cellular growth, which is based on the uptake of NH4

1 and NO3
2

(see Materials and Methods). It is natural that such in situ incubation experiments dis-
play a variation in their results, since the initial conditions vary based on the locations.
The ideal conditions to test relaxation from nutrient stress are to use a nutrient-starved
phytoplankton community, which spends a long time under low-nutrient conditions
(26, 27). Considering the nutrient history of the in situ phytoplankton community, we
selected M3 as the best example to observe relief from nutrient stress, since the water

FIG 2 (A) N in biomass in each treatment and its contribution of each phytoplankton group of experiment
M3. (B) Contribution to total C in biomass as a function of the contribution of NH4

1-N biomass for each
phytoplankton group. (C) Contribution to total carbon in biomass as a function of the contribution of
NO3

2-N biomass for each phytoplankton group. The contributions of NH4
1-N or NO3

2-N were estimated
from either NH4

1 or NO3
2 enrichment. Each circle shows data from a different day, and the size of the dots

represents the total C in biomass (nmol C L21). Pro, Prochlorococcus; Syn, Synechococcus; Cro, Crocosphaera;
PicoE, picoeukaryotes.
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mass changed from more N-limited to N-rich water between M3 and M4 (see Tables S1
and S3 in the supplemental material). The N-limited nutrient history of phytoplankton was
confirmed by low initial nutrient conditions and low biomass of the targeted organisms.
Thus, we focus on the data from experiment M3 for modeling analysis.

The model captured the overall trend of the transition of cellular N (Fig. 3) based on the
available nutrient (see Fig. S6 in the supplemental material). The parameterization of the
model reveals high rates of N uptake by Crocosphaera. We used 6.6 mol N (mol N)21 d21 for
maximum NH4

1 uptake under NH4
1 limitation to represent the data, which represent high

combined-N uptake compared to that of other phytoplankton under the same condition
(maximum NH4

1 uptake of 1.1 mol N [mol N]21 d21) (see Table S4 in the supplemental ma-
terial). Specifically, such parameterization was needed to reproduce the rapid growth of
Crocosphaera under NH4

1 added conditions between day 0 and day 1. The predicted maxi-
mum NO3

2 uptake rate for Crocosphaera is also higher than for other phytoplankton (Fig. 3),
which is supported by the faster growth of Crocosphaera with NO3

2 addition.
To test the competitiveness of Crocosphaera, we simulated a simple ecological situation.

Here, we simulated zooplankton with kill the winner (KTW) theory (28). We used this method
because it reflects the commonly observed active prey-switching behavior of zooplankton (29–
31). The result shows the high competitiveness of Crocosphaera under both high and low nutri-
ent concentrations (Fig. 4; see also Fig. S7 in the supplemental material). Under a high nutrient
concentration, Crocosphaeramay dominate other phytoplankton due to the high rate of nutrient
uptake (Fig. 4A; see also Fig. S7A). However, under extremely low-nutrient conditions (NH4

1 and

FIG 3 Simulated transition of cellular N with nutrient addition compared with data. (A, B) NH4
1-added case.

(C, D) NO3
2-added case. Croco, Crocosphaera; Other, other phytoplankton. Data are from experiment M3.

FIG 4 Simulated transition of cellular N in a simple ecosystem model for three different scenarios. (A) The concentrations for
NH4

1 and NO3
2 are both 100 nmol L21. (B, C) The concentrations for NH4

1 and NO3
2 are both 1 nmol L21. In only panel C,

Crocosphaera may acquire N via N2 fixation; in panels A and B, the effect of N2 fixation is neglected. Parameters are based on
the NH4

1-added case.
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NO3
2 are both at 1 nmol L21), Crocosphaera is slightly outcompeted (Fig. 4B; see also Fig. S7C

and D). This is due to the relatively high half-saturation constant for NH4
1, which is manifested

by the sudden decrease in growth rate with a drop in NH4
1 under NH4

1 addition (Fig. 3A; see
also Fig. S6A). However, this relationship flips if we consider the effect of N2 fixation, which main-
tains growth rates at a higher level rather than relying on external N under N depletion (Fig. 4C;
see also Fig. S7B). These results suggest that possession of nitrogenase (an enzyme complex
involved in N2 fixation) allows for the survival of Crocosphaera under low-nutrient environments.

DISCUSSION

Our study shows high uptake of N by Crocosphaera under relatively high N concentration
(Fig. 1 and 2). As described in themethod, we estimated cell size of each phytoplankton group
based on forward light scatter of flow cytometry, which was calibrated by 1.75- to 10-mm
standard monodisperse polystyrene beads (Polysciences) (see Fig. S8 in the supplemental ma-
terial). We are aware of the difficulty in estimating the absolute cell size through forward light
scatter (FLS) (32) as well as in volume-to-carbon conversion (33, 34). Acknowledging these limi-
tations, we note that the FLS approach has the advantage of taking into account actual cell
size variability compared to the application of a constant carbon per cell factor (35). Despite
these constraints, our biomass estimation accounted for approximately half of consumed N
(Fig. 1, 2A). This gap may be caused by the limitations of an FLS-based approach.
Conversely, uncertainties in size estimation will be more pronounced for the smaller cells
than for the larger cells, i.e., Prochlorococcus in our experiments, since Mie light scattering
theory predicts that scattering per cell volume continues to increase with decreasing particle
size. The other possibility of the gap may be due to luxury uptake, (27, 36). Although there
are uncertainties in estimating absolute size, which leads to uncertainties in cellular N con-
tent, these uncertainties do not change our finding of high N uptake by Crocosphaera,
known as a bioavailable nitrogen provider. Our samples, filtrate of 1-mm polypropylene car-
tridge filter, consisted of up to 5-mm cells. This shows the leak of phytoplankton through fil-
ters (37, 38). Since Crocosphaera watsonii (2 to 6mm) is larger than other groups (21, 39, 40),
higher filtration pressure might lead to underestimation of Crocosphaera abundance and
biomass compared to other groups. The Crocosphaera abundances observed in our experi-
ment are in the same range with nanocyanobacteria, the temporal name for the Crocosphaera
in reference 25 (see Table 1 in reference 25), which described initial conditions of the same
cruise, suggesting that most of the Crocosphaera cells went through the filter. During our
experiment, biomass in any phytoplankton did not increase at experiment M5 (Fig. 2 and 3).
Together with the NH4

1 concentration remaining at more than 30 nM (see Table S1 in the
supplemental material), this suggests the non-N-limited nutrient history of the phytoplankton
community in experiment M5 (Fig. 3).

The results counter the general image of Crocosphaera. It is most known as a diazotroph
and is considered to be a provider of N to the environment. Rather, our results support
more recent studies, where Crocosphaera does not increase the productivity of other phyto-
plankton (41) or even compete with other species over combined N (23). Surprisingly, our
study even shows higher maximum uptake rates of NH4

1 and NO3
2, which allow its domi-

nance just by the uptake of combined N. When the concentration of nitrogen is extremely
low, Crocosphaera could be outcompeted via N uptake; however, its N2 fixation allows
Crocosphaera to maintain its biomass at a certain level, which can still be higher than that of
nondiazotrophic phytoplankton. This high consumption of NO3

2 may differ from UCYN-A
(15, 42–44), which keeps fixing nitrogen under high NO3

2 availability (45, 46), leading to a
unique niche acquisition. These results suggest that Crocosphaera has high competitiveness
under conditions with both low and high nutrients.

Despite this, we generally do not observe the oligotrophic ocean completely dominated
by Crocosphaera. This may be due to grazing selection. Crocosphaera is a unicellular cyano-
bacterium, a few micrometers to 6 mm in diameter (47), and its tight coupling with preda-
tors has been reported recently (48). The new production of Crocosphaera is estimated to
support up to 400% of C demand of the main grazers, and the grazing rates of the main pred-
ator Protoperidinium were found to be nearly equivalent to growth rates of Crocosphaera (48).
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Conversely, Trichodesmium, another N2 fixer in the ocean, is reported to produce a toxin (49–
51) and create large colonies of ;104 cells (52), potentially protecting themselves from graz-
ing. The other reason might be growth limitation by other nutrients, such as P and Fe. Even
though there are reports that Crocosphaera shows adaptation for low P and low Fe, having
high-affinity phosphate transporters (53) as well as availability of several chemical forms of P
(54–56) and high affinity to low Fe concentrations (57) and recycling Fe (14), their relative fit-
ness to such low P or low Fe environments compared to other organisms has not been quan-
tified. Since having nitrogenase enzymes requires a high concentration of Fe, nonnitrogen
fixers, such as Prochlorococcus and Synechococcus, may have lower Fe requirements and are
more adapted to Fe depletion. Also, Crocosphaera does not seem to fully utilize sulfolipid,
which would save P use when compared with that of other cyanobacteria, such as
Synechococcus (58, 59), and thus may not compete strongly under P limitation. Neither P limi-
tation nor Fe limitation were observed during our observation (P , 0.05; repeated measures
analysis of variance [RM-ANOVA], post hoc Tukey test) (Fig. 2A; see also Fig. S3 and Tables S1,
S5, and S6 in the supplemental material).

At the same time, it is largely possible that Crocosphaera dominates in some regions
in the oligotrophic ocean given its high competitiveness under N limitation, which is
the characteristic of the oligotrophic ocean (7, 60). For example, a study of flow cytom-
etry shows a high abundance of Crocosphaera-like cells in a wide region of the North
Pacific (61), where the abundance of Trichodesmium seems limited (62). Also, a recent
study shows multiple gene copies in Trichodesmium (up to ;700 genes copied per
cell) (63), which could overestimate their abundance (64). Given these factors and our
analysis showing the high fitness of Crocosphaera to both low and high nitrogen con-
centrations, it is possible that we are still underestimating the relative abundance and
role of Crocosphaera in global biogeochemical cycling.

MATERIALS ANDMETHODS
Experimental setup and sample collection. We carried out five macronutrient (N and P)-addition

bioassays (M1 to M5) using natural phytoplankton assemblages collected at a station in the subtropical
Northwestern Pacific (12°N, 135°E) from 6 to 25 June 2008 during the MR08-02 cruise on the R/V MIRAI (see
Table S7 in the supplemental material). Water samples were collected from a 10-m depth at 1230 h local time
using a Teflon diaphragm pump system. All components of this pump system and associated plastic were
washed overnight in a neutral detergent followed by HCl and HNO3, rinsed with heated Milli-Q water, and
flushed with seawater for 30 min immediately prior to sample collection. To reduce grazing pressure, we prefil-
tered seawater from a 10-m depth through an acid-cleaned 1-mm in-line cartridge filter (Micropore EU;
ORGANO) and distributed it into 4-L polycarbonate bottles, which were rinsed overnight in a neutral detergent,
followed by 0.3 N HCl, and rinsed with Milli-Q water. We performed three treatments with 100 nM N addition
as NaNO3, NH4Cl, or urea. To test P limitation, one treatment with 10 nM NaH2PO4 and our control went with-
out nutrient addition. Forty-five bottles, 5 treatments, and 3 incubation periods (1, 2, or 3 days) were incubated
in triplicate for each incubation period (1, 2, or 3 days) on deck in flowthrough seawater tanks covered with a
neutral density screen to attenuate light intensity to 50% of its corresponding surface value. Each bottle was
used for one time period after washing.

To examine Fe limitation, we carried out three Fe addition bioassays (Fe1 to Fe3) at the same station dur-
ing the same cruise with the macronutrient addition bioassay experiments (see Table S8 in the supplemental
material). Prior to the bioassay experiments, the 2-L polycarbonate incubation bottles had been cleaned
according to reference 65. Other polyethylene and Teflon lab wares were cleaned according to reference 66.
All washing procedures were carried out in an onshore class 1000 clean air room, and plastic gloves were worn
during these operations. To reduce grazing pressure, prefiltrated seawater was prefiltered through a 10-mm fil-
ter of the same manufacturer. The prefiltered water was then dispensed into the corresponding bioassay incu-
bation bottles. Five duplicate treatments were set up as follows: controls without any nutrient addition, phos-
phate additions with 10 nM NaH2PO4, iron addition with 1 nM FeCl3, an Fe1P treatment with 1 nM FeCl3 and
10 nM NaH2PO4, and Fe1N treatment with an amendment of 1 nM FeCl3 and 100 nM NaNO3. To all treatments
containing iron addition, EDTA (1 nM) was added as a buffer. Fe addition treatments were done in an onboard
class 100 clean air room. Bottles for the iron addition bioassays were also incubated in on-deck flowthrough
seawater tanks covered with neutral density screen to attenuate light intensity to 50% of its corresponding sur-
face value. Iron addition bioassays lasted for 5 days, monitoring total iron (TFe), dissolved iron (DFe), and phyto-
plankton community composition on days 0, 1, 3, and 5.

Macronutrient and iron concentrations. Concentrations of NO3
2 1NO2

2 (N1N), NH4
1, soluble reac-

tive phosphorus (SRP), and urea were measured using a high-sensitivity colorimetric approach with an
AutoAnalyzer II (Technicon) and liquid waveguide capillary cells (World Precision Instruments, USA).
Triplicate samples for the NO3

21NO2
2 (N1N), NH4

1, urea, and soluble reactive phosphorus (SRP) (67,
68) analysis were collected in 100 mL of 0.1 N HCl-rinsed polyethylene bottles. All samples were analyzed
onboard, with the exception of urea, which was only measured in the urea treatment. Upon collection, all

Marine N2 Fixer CrocosphaeraMay Be a DIN Consumer Microbiology Spectrum

Month YYYY Volume XX Issue XX 10.1128/spectrum.02177-21 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

30
 J

un
e 

20
22

 b
y 

15
0.

26
.5

2.
97

.

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02177-21


samples were stored at 220°C until analysis. We analyzed urea concentrations using the diacetyl monoxime
method (69). Detection limits of NO3

21NO2
2, NH4

1, and SRP were 3, 6, and 3 nM, respectively.
Iron concentrations of the seawater were measured as total iron (TFe), in the whole-water samples

collected directly from the pump system, and as dissolved iron (DFe), in the 125 mL of seawater col-
lected in low-density polyethylene bottles (Nalgen; Nalge Nunc International), cleaned according to the
methods of reference 65, and filtered through an acid-cleaned 0.22-mm pore filter (Millipak 100;
Millipore). All TFe and DFe samples were acidified with HCl to a pH of ,1.5 and stored at room tempera-
ture for at least 1 year. Dissolved Fe(III) in seawater samples was determined using catalytic cathodic
stripping voltammetry with a detection limit of 6 pM using the approach of reference 70. No contamina-
tion during sampling and incubation was detected.

Flow cytometry. Flow cytometry (FCM) identified Prochlorococcus, Synechococcus, picoeukaryotes,
and Crocosphaera based on cell size and chlorophyll or phycoerythrin fluorescence. Aliquots of 4.5 mL
were preserved in glutaraldehyde (1% final concentration), flash-frozen in liquid N2, and stored at 280°C
until analysis on land by flow cytometry (PAS-III; Partec, GmbH, Münster, Germany) equipped with a 488-
nm argon-ion excitation laser (100 mW). We recorded forward- and side-angle scatter (FSC and SSC), red
fluorescence (.630 nm; FL3), and orange fluorescence (570 to 610 nm; FL2). FloMax (Partec, GmbH,
Münster, Germany) distinguished Synechococcus, Prochlorococcus, Crocosphaera, and picoeukaryotes
based on their autofluorescence properties and their size (61). The instrument settings were standar-
dized for fluorescence intensity and size by using 1.75-, 2.0-, 3.0-, 6.0-, and 10-mm standard monodis-
perse polystyrene beads (Polysciences) (see Fig. S8 in the supplemental material).

Gene analysis. We collected DNA samples from each treatment of the bioassay and collected ali-
quots of 0.5 to 1.0 L of sample on 0.2-mm SUPOR polyethersulfone membrane filters, which we then
placed in sterile tubes containing glass beads, froze in liquid N2, and stored at 280°C until further analy-
sis. DNA was extracted according to reference 71 to determine the abundance of Crocosphaera watsonii
by quantitative PCR (qPCR) using a 59 nuclease assay as described in reference 72.

Quantitative PCR showed that cell densities of FCM-identified Crocosphaera were significantly positively
correlated with nifH gene copies used to quantify the proportion of Crocosphaera, indicating that nifH abun-
dance accounted for 68% of the variation in FCM-identified Crocosphaera (r2 = 0.463, n = 48, P = 0.001; Pearson
product moment correlation). Therefore, this study treated FCM-identified Crocosphaera as diazotroph
Crocosphaera. Cell abundance estimated by qPCR was 0.636 0.23-fold lower than that measured by FCM.

Nitrogen fixation. To measure in situ N2 fixation activity, we used the acetylene reduction assay of
references 73, 74. We dispensed a total of 550-ml bioassay samples into 1,200 mL HCl-rinsed glass poly-
ethylene terephthalate modified with glycol (PETG) bottles with 6 replicates and sealed with butyl rub-
ber stoppers. Aliquots of 120 mL of acetylene (99.9999% [vol/vol]; Koatsu Gas Kogyo, Japan) were
injected through the stopper by replacing the same volume of headspace. After 24 h in the on-deck
flowthrough seawater tanks, we analyzed ethylene concentrations by converting the ethylene to fixed
nitrogen with a molar ratio of 4:1 (75).

Cellular C and N estimation. First, we estimated cell size and cell volume based on forward-angle
scatter data obtained by flow cytometry following reference 76. Then, we used a conversion factor of 235 fg C
mm23 for Prochlorococcus, Synechococcus, and Crocosphaera (76) to estimate cellular carbon content. For
picoeukaryotes, we represented cell volume by converting it into carbon per cell using a modified Strathmann
equation (77) as follows:

logC pg=cell
� � ¼ 0:94� logVol mm3

� �
20:6

Then, using an earlier reported C/N ratio (C/N ratio = 9.1 for Prochlorococcus, 8.6 for Synechococcus, 8.7 for
Crocosphaera, 6.6 for picoeukaryotes), we converted the cellular C content into cellular N (21, 78, 79).

Statistical analysis. Phytoplankton cell densities of each bioassay were first compared between
treatments using repeated measures analysis of variance (RM-ANOVA) with nutrient treatments as a
between-subjects factor (5 levels) and time (4 levels) as a within-subjects factor. Treatment effects were
considered significant if P was ,0.05. Then, the means of five treatments were compared by post hoc
Tukey test (n = 3 replicates per treatment throughout; degrees of freedom = 40). An outlier value in
Table S1 in the supplemental material was selected following Smirnov-Grubbs's test (a = 0.05).

Quantitative model of microbial growth. To quantitatively analyze the fitness of Crocosphaera
under N-limiting conditions, we ran two simulations. One was to represent the incubation experiment to
extract parameters manually, and the other was the simple ecosystem model to simulate their competi-
tiveness under different nutrient concentrations and scenarios. The list of parameters and used values
can be found in Tables S4 and S8 in the supplemental material, respectively.

(i) Simulation of the incubation experiment. We used the following equations for the growth of
phytoplankton to represent the field incubation experiment:

dNi

dt
¼ miNi2miNi (1)

where Ni (nmol L21) is the cellular nitrogen concentration of phytoplankton i (i = Cro, Oth: Crocosphaera
and other phytoplankton, respectively) per volume water, t (d) is time, m i (d

21) is the growth rate of phy-
toplankton i, and mi (d

21) is a mortality rate of phytoplankton i.
To represent the growth of Crocosphaera and other phytoplankton, we used simple growth equa-

tions based on the sum of Monod kinetics (80) for each nutrient.
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mi ¼ VNH4
Max;i

½NH1
4 �

½NH1
4 �1KNH4

i
1VNO3

Max;i
½NO2

3 �
½NO2

3 �1KNO3
i

(2)

VNH4
Max;i and VNO3

Max;i (d
21) are the maximum uptake rate of phytoplankton for NH4

1 and NO3
2, respectively,

[j] (nmol L21) is the concentration of nutrient j (j = NO3
2, NH4

1), and KNH4
i and KNO3

i (nmol L21) are the
half-saturation constants of nutrient for phytoplankton i, respectively. We used the data-fitted quadratic
curve of nutrient concentrations (see Fig. S6 in the supplemental material).

(ii) Simple ecosystem simulation. To simulate the simple ecosystem situation, we introduced the
grazing by zooplankton as follows:

dNi

dt
¼ miNi2GiNZoo (3)

dNZoo

dt
¼ GCro1GOthð ÞNZoo2mZooN

2
Zoo (4)

where Gi (d
21) is the grazing rate of phytoplankton i by zooplankton, NZoo (nmol L21) is the nitrogen con-

centration in zooplankton per volume water, and mZoo (d
22) is the quadratic mortality rate of zooplank-

ton. When we allow nitrogen fixation, we used mCro = 0.31 (d21) (a typical growth rate under diazotro-
phic conditions) (81) if the computation based on equation 2 yielded a value below 0.31 (d21).

For Gi we have applied the KTW method (28) as follows:

Gi ¼ Gmax
N2

i

N2
Cro1N2

Oth

 !
NCro1NOthð Þ2

NCro1NOthð Þ21K2
G

 !
(5)

where Gmax (d
21) is the maximum grazing rate and KG (nmol L21) is grazing half saturation. We chose this

method since the equation reflects the commonly observed prey-switching behavior of zooplankton
(29–31), which stabilizes ecosystems (82, 83). This method allows a diverse phytoplankton to coexist (84)
as observed in nature.

Code availability. The model developed in this paper has been uploaded in GitHub/Zenodo and is
freely available at https://zenodo.org/record/5095790.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2.3 MB.
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