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Sciences, Opatovický Mlýn, 379 81 Třeboň, Czech Republic; novakova.m7@seznam.cz (M.N.);
fabryova.tereza@gmail.com (T.F.); kopecky@alga.cz (J.K.); hrouzek@alga.cz (P.H.)

2 Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Akademika Heyrovského
1203, 500 05 Hradec Králové, Czech Republic; tumova@faf.cuni.cz

3 Institute of Clinical Immunology and Allergology, Faculty of Medicine and University Hospital,
Charles University, Sokolská 581, 500 05 Hradec Králové, Czech Republic; vokurkovad@lfhk.cuni.cz
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Abstract: Global demand for natural pigments has increased in the past few years. Myxoxanthophyll,
a glycosylated monocyclic carotenoid, is a pigment that occurs naturally in cyanobacteria but no
scalable isolation process has been developed to obtain it from its natural source to date. In this study,
myxoxanthophyll was isolated from unicellular cyanobacterium Synechocystis salina (S. salina) using
high-performance countercurrent chromatography (HPCCC), where the lower phase of the biphasic
solvent system composed of n-heptane–ethanol–water (2:4:4, v/v/v) was used as a mobile phase,
whereas its upper phase was the stationary phase. For the HPCCC isolation, a multi-injection method
was developed, and four consecutive sample injections (70 mg each) were performed, obtaining,
in total, 20 mg of myxoxanthophyll, which was finally purified with high-performance liquid
chromatography (HPLC). Overall, a final myxoxanthophyll yield of 15 mg (98% purity) was obtained.
The target pigment showed a weak antioxidant and tyrosinase inhibitory effect, and exhibited
immune-stimulating properties by activating human granulocytes. The results presented here form
a basis for the large-scale production of myxoxanthophyll, and show the potential benefits of this
pigment for human health.

Keywords: myxoxanthophyll; cyanobacteria; Synechocystis; high-performance countercurrent
chromatography (HPCCC); countercurrent chromatography (CCC); centrifugal partition
chromatography (CPC)

1. Introduction

Currently, the global market of carotenoid pigments is led by the products derived from
organic synthesis; however, the growing evidence of the danger of consuming synthetic pigments
has encouraged the consumers to prefer natural pigments in nutraceuticals, food and cosmetics.
Cyanobacterium Synechocystis has been one of the most extensively studied species since it was initially
isolated from a fresh lake in 1968 [1]. It was reported to biosynthesize different types of pigments
including chlorophyll, carotenoids and phycobiliproteins, many of which have attracted the attention
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of the industries and researchers due to their varied bio-functionality and applications [2]. One of
the carotenoid pigments synthesized by Synechocystis is myxoxanthophyll (Figure 1), a glycosylated
monocyclic carotenoid that is rarely found in nature [3,4]. This yellow pigment has been shown to
exhibit antioxidant and anti-hyperglycemic activities [5,6]. The potential of myxoxanthophyll in the
prophylactic and/or therapeutic treatment of undesirable conditions due to oxidative processes has also
been disclosed [7]. To the best of our knowledge, this pigment has not yet been offered commercially,
and its bio-functional properties of interest in the food, nutraceutical and cosmetic sectors have not
been extensively addressed.

Separations 2020, 7, x FOR PEER REVIEW 2 of 15 

 

pigments including chlorophyll, carotenoids and phycobiliproteins, many of which have attracted 
the attention of the industries and researchers due to their varied bio-functionality and applications 
[2]. One of the carotenoid pigments synthesized by Synechocystis is myxoxanthophyll (Figure 1), a 
glycosylated monocyclic carotenoid that is rarely found in nature [3,4]. This yellow pigment has been 
shown to exhibit antioxidant and anti-hyperglycemic activities [5,6]. The potential of 
myxoxanthophyll in the prophylactic and/or therapeutic treatment of undesirable conditions due to 
oxidative processes has also been disclosed [7]. To the best of our knowledge, this pigment has not 
yet been offered commercially, and its bio-functional properties of interest in the food, nutraceutical 
and cosmetic sectors have not been extensively addressed. 

 
Figure 1. Chemical structure of myxoxanthophyll. 

To date, myxoxanthophyll has been obtained from Synechocystis sp. biomass using multi-step 
procedures employing different solid-support columns [8], which required solvent- and time- 
consuming operations, thus making the whole process more complex and expensive. To make 
Synechocystis, a commercially exploitable source of myxoxanthophyll, the application of a scalable 
separation approach is needed. In this context, the use of high-performance countercurrent 
chromatography (HPCCC) technology might be relevant due to its high efficiency and proven 
scalability [9]. HPCCC lacks the need for any solid support, as two immiscible phases of a biphasic 
solvent system can be indistinctly used as a mobile or stationary phase [10]. The stationary phase is 
immobilized in the HPCCC column by means of a centrifugal force field generated by column 
spinning, whereas the mobile phase is pumped through the column. The HPCCC separation of target 
compounds from a mixture is based on the difference in their partitioning between two immiscible 
phases. Unlike solid-support chromatography, in HPCCC the liquid nature of the stationary phase 
gives this technique several advantages which include a large sample loading capacity, low risk of 
irreversible adsorption, high sample recovery, low consumption of solvents, and great operational 
versatility since the roles of the mobile and stationary phases can be exchanged during the 
chromatographic operation [10,11]. The efficiency of HPCCC in the purification of a wide variety of 
active compounds from natural sources has been extensively demonstrated [12–16] and its 
application at industrial level is already a reality [9]. The present study integrates the cultivation of 
Synechocystis salina (S. salina) and HPCCC technology to produce myxoxanthophyll, which was 
subsequently tested for its antioxidant, tyrosinase inhibitory, and immune-stimulating effects. 
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and CO2 (98:2; v/v) at rate of 5 L/min to maintain a high turbulence in the reactor and to prevent the 
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To date, myxoxanthophyll has been obtained from Synechocystis sp. biomass using multi-step
procedures employing different solid-support columns [8], which required solvent- and time-
consuming operations, thus making the whole process more complex and expensive. To make
Synechocystis, a commercially exploitable source of myxoxanthophyll, the application of a scalable
separation approach is needed. In this context, the use of high-performance countercurrent
chromatography (HPCCC) technology might be relevant due to its high efficiency and proven
scalability [9]. HPCCC lacks the need for any solid support, as two immiscible phases of a biphasic
solvent system can be indistinctly used as a mobile or stationary phase [10]. The stationary phase is
immobilized in the HPCCC column by means of a centrifugal force field generated by column spinning,
whereas the mobile phase is pumped through the column. The HPCCC separation of target compounds
from a mixture is based on the difference in their partitioning between two immiscible phases. Unlike
solid-support chromatography, in HPCCC the liquid nature of the stationary phase gives this technique
several advantages which include a large sample loading capacity, low risk of irreversible adsorption,
high sample recovery, low consumption of solvents, and great operational versatility since the roles
of the mobile and stationary phases can be exchanged during the chromatographic operation [10,11].
The efficiency of HPCCC in the purification of a wide variety of active compounds from natural sources
has been extensively demonstrated [12–16] and its application at industrial level is already a reality [9].
The present study integrates the cultivation of Synechocystis salina (S. salina) and HPCCC technology to
produce myxoxanthophyll, which was subsequently tested for its antioxidant, tyrosinase inhibitory,
and immune-stimulating effects.

2. Materials and Methods

2.1. Biomass Production

S. salina PCC6906 was cultivated in a 120 L flat panel photobioreactor (FPP) with a light path of
5 cm, 200 cm length and 100 cm height with a total working volume of 100 L. A S. salina culture from
the Culture Collection of Autotrophic Organisms (CCALA) of the Institute of Botany of the Czech
Academy of Sciences was used to inoculate the FPP. The culture was bubbled with a mixture of air
and CO2 (98:2; v/v) at rate of 5 L/min to maintain a high turbulence in the reactor and to prevent the
sedimentation of cyanobacterial cells. The FPP surface was illuminated by means of a set of fluorescent
lamps TLD 36W/84 (Koninklijke Philips N.V., Amsterdam, The Netherlands) installed on a horizontal
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illumination unit. Continuous incident light intensity on the photobioreactor surface was attained by
adjusting distance to 80 W/m2, measured with a LI-250 light meter (LI-COR Biosciences, Lincoln, NE,
USA). The BG-11 medium in semi-batch system was used for cultivation at the constant temperature of
25 ± 0.5 ◦C. After depletion of nitrates from the cultivation medium, the biomass from four-fifths of the
total culture volume was harvested by centrifugation at 4000× g and then lyophilized. The remaining
one-fifth of the suspension was refilled with freshly prepared BG-11 medium. The cultivation was
repeated three times in order to obtain enough freeze-dried S. salina biomass. The microalgae growth
was monitored as displayed in Figure S1.

2.2. Extract Preparation

For the microalgae extract preparation, an amount of 40 g of dried S. salina biomass was extracted
with 1 L of 96% (v/v) ethanol in an ultrasonic bath for 30 min. The extraction operation was performed
in triplicate and the resulting extracts were combined and further centrifuged (1350× g, 10 min) to
separate insoluble particles. The solvent was evaporated from the extract in a rotary evaporator under
reduced pressure at 38 ◦C. The process afforded 4.736 g of dried extract, which was used for the HPCCC
isolation of myxoxanthophyll.

2.3. Separation of Myxoxanthophyll Using HPCCC

2.3.1. HPCCC Equipment

For the separation of myxoxanthophyll from S. salina extract, a HPCCC equipment,
Model Spectrum, (Dynamic Extractions Ltd., Slough, UK) equipped with a separation column
of 134 mL (PTFE bore tubing = 3.2 mm) was used. The column rotational speed was controlled with a
speed regulator installed into the HPCCC chassis, and the column temperature was maintained at 28
◦C with a H50/H150 Smart Water Chiller (LabTech Srl, Sorisole Bergamo, Italy). To pump the mobile
phase through the column, a Q-Grad pump (LabAlliance, State College, PA, USA) was employed. The
chromatographic separation was monitored by a Sapphire UV-VIS detector (ECOM spol. s.r.o., Prague,
Czech Republic) at a wavelength of 478 nm. The EZChrom SI software platform (Agilent Technologies,
Pleasanton, CA, USA) was used for viewing and recording the chromatogram.

2.3.2. Selection of the Suitable Biphasic Solvent System for HPCCC

Different volume ratios of n-heptane, ethanol and water were used for the preparation of
several biphasic solvent systems. An ideal solvent system in HPCCC should provide a suitable
partition coefficient (K) of the target compound [10,15], a short settling time and a proper density
difference between the upper and lower phases of the biphasic solvent system [10,15]. For the K value
determination, a quantity of 2 mg of microalgae extract was dissolved in 2 mL of the pre-equilibrated
solvent system composed of 1 mL of each phase. This mixture was shaken well and left for 10 min
until the formation of two clear phases. The resulting upper and lower phases were separated and
further used for calculating the K value by high-performance liquid chromatography with diode
array detection (HPLC-DAD). The K value was estimated as the ratio between the upper- and lower-
phase myxoxanthophyll peak areas. The settling time was measured as previously described [17].
For this purpose, two immiscible phases (2 mL of each phase) of the biphasic solvent system were first
equilibrated in a test tube. The capped tube was then gently inverted three times and then immediately
placed in an upright position to measure the time required for the two phases to form clear layers with
a distinct interface. For measurement of the density difference between the upper and lower phases of
each biphasic solvent system, 1 mL of each phase was weighed with a microbalance [15].

2.3.3. HPCCC Separation Process

The separation process was performed using the selected biphasic solvent system composed
of n-heptane, ethanol, and water. The upper and the lower phases of the resulting biphasic solvent
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system were employed as the stationary phase and the mobile phase, respectively. The preparation
of the phases for the HPCCC process was performed by mixing the individual solvents in terms of
volume ratios. The mixture was vigorously shaken until the creation of two clear immiscible phases.
The HPCCC separation process began with filling the column with the stationary phase (upper phase).
When the column was full, the HPCCC column was rotated up to 1400 rpm and its temperature was
set at 28 ◦C. Once these two parameters were stable, the pumping of the mobile phase started in
order to reach the hydrodynamic equilibrium between the mobile and the stationary phases within
the HPCCC column. This occurs when the mobile phase has emerged from the column without the
carryover of the stationary phase. At this point, the chromatographic system was ready for the sample
injection. The S. salina extract dissolved in a volume of the mobile phase served as a sample solution.
The HPCCC fractions were manually collected and analyzed by HPLC-DAD.

The retention of the stationary phase (Sf ) in the HPCCC column was calculated as follows

S f (%) =
Vs
Vc
× 100 (1)

where Vc is the volume of the HPCCC column and Vs is the stationary phase volume in the column
when hydrodynamic equilibrium has been achieved [18].

The retention time (tR) of the target compound in the HPCCC separation was predicted as follows

tR =
VM + (K ×VS)

F
(2)

where VM is the mobile phase volume when the hydrodynamic equilibrium is reached, K is the
partition coefficient of the target compound, VS is the stationary phase volume when the hydrodynamic
equilibrium has been reached, and F is the mobile phase flow rate [18].

2.4. Final Purification of the Myxoxanthophyll Fraction by Semi-Preparative HPLC

The myxoxanthophyll fraction obtained from HPCCC was finally purified using a HPLC system (Agilent
1100 Series, Waldbronn, Germany) on a reverse phase semi-preparative column (Eclipse XDB-C8 column, 250
× 9.4 mm, 5 µm) at 30 ◦C. The combination of water (A) and methanol (B) was used as the mobile phase,
which was pumped at a flow rate of 2.5 mL/min in a gradient elution mode that was programmed according to
the following conditions: 0–10 min, 70–30% A; 10–35 min, 30–10% A; 35–37 min, 10–0% A; 37–42 min, 0–0% A;
42–45 min, 0–70% A; 45–50 min, 70–70% A. The target compounds in the chromatogram were monitored
using a diode array detector (DAD) at 478 nm.

2.5. HPLC-DAD Analysis of Extract and Fractions

The S. salina extract and HPCCC fractions were analyzed on an Agilent HPLC system (Agilent
1100 Series, Waldbronn, Germany) equipped with a DAD. The reversed phase column (Luna® C8
column, 100 × 4.6 mm, 3 µm) was used for the chromatographic separation at 30 ◦C, where the mobile
phase was composed of the mixture of water (A) and methanol (B), which were constantly pumped at
a flow rate of 0.8 mL/min. For the separation, the column was eluted using a linear gradient as follows:
0–20 min, 20–0% A; 20–25 min, 0% A; 25–27 min, 0–20% A; 27–30 min, 20–80% A; 30–35 min, 80% A;
35–42 min, 80–20% A. The HPLC chromatogram was acquired at 478 nm, whereas the absorption
spectrum of the target compound was collected from 200 to 700 nm.

2.6. Confirmation of the Chemical Identity of the Purified Target Compound

The chemical identity of the isolated target compound was established using a Dionex UltiMate
3000 HPLC system (Thermo Scientific, Sunnyvale, CA, USA) connected to a high-resolution tandem
mass spectrometry (HRMS/MS) detector with electrospray ionization (ESI) source (Impact HD mass
spectrometer, Bruker, Billerica, MA, USA) (HPLC-ESI-HRMS/MS). The identification of the target
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compound was confirmed in comparison with the published literature data. The conditions for the
chromatographic separation are described in Section 2.5. Additionally, a formic acid (0.1%, v/v) solution
was put in both solvents A and B to achieve a better ionization of the target compound. The operating
parameters of the mass spectrometer were established as follows: 4.2 kV of the spray needle voltage,
250 ◦C of the drying temperature, nitrogen was used as the nebulizing (3 bar) and the drying gas
(12 L/min). The scanning range was 50–2000 m/z in the positive ion mode with the scanning rate at
2 Hz. For the fragmentation of myxoxanthophyll, the collision energy was set to 35 eV and the collision
gas was nitrogen.

2.7. Biological Evaluations

2.7.1. DPPH Free Radical Scavenging Activity

The antioxidant activity of the target compound was determined using 2,2-diphenyl-1-picrylhydrazyl
(DPPH) (Sigma-Aldrich, Steinheim, Germany) as a stable free radical. The DPPH assay was performed
as described previously [19] with slight modifications. Briefly, 100 µL of the 0.01% (v/v) DPPH diluted in
methanol was added to 100 µL of the tested substance diluted in methanol with 0.5% (v/v) DMSO in a 96-well
plate. The absorbance was measured after 30 min at 515 nm using an Envision multimode plate reader
(PerkinElmer, Boston, MA, USA). Trolox and astaxanthin (both Sigma-Aldrich, Steinheim, Germany) were
used as positive controls.

2.7.2. Inhibition of Tyrosinase Activity

The activity of fungal tyrosinase (2138 U/mL, Sigma-Aldrich, Steinheim, Germany) was
measured spectrophotometrically using levodopa (L-DOPA) (Sigma-Aldrich, Steinheim, Germany) as
a substrate [20]. A volume of 50 µL of a solution containing the target compound diluted in phosphate
buffered saline (PBS) with 8% (v/v) DMSO was mixed with 100 µL of L-DOPA (1 mg/mL), 50 µL of
fungal tyrosinase (500 U/mL) in PBS and incubated at 37 ◦C for 30 min. The dopachrome formation
was measured at 475 nm using an Envision multimode plate reader (PerkinElmer, Boston, MA, USA).
Kojic acid (TCI chemicals, Oxford, United Kingdom) was used as a positive control.

2.7.3. Immune Cell Activation

The immune cell activation was determined by the expression of cell surface glycoprotein
CD69 (cluster of differentiation 69), as measured by flow cytometry [21]. Peripheral blood was
withdrawn from three healthy volunteers, and further anti-coagulated with sodium heparin. The test
sample was prepared at different concentration by dissolving myxoxanthophyll in ex-vivo medium
(Bio-Wittaker, Walkersville, MD, USA), which were subsequently filtered through 0.2 µm filters,
before use. Phytohemagglutinin (PHA) (Sigma- Aldrich, Steinheim, Germany) was used as a positive
control at a concentration of 10 µg/mL. A volume of 100 µL of blood suspension was incubated with
100 µL of test samples into a sterile 96-well flat-bottomed plate at 37 ◦C with 5% (v/v) CO2 for 24 h.
The final concentrations of myxoxanthophyll in the assay media were 20 and 60 µM. After incubation,
10 µL of a cocktail of fluorescently labeled monoclonal antibodies (CD3 PE-Cy5, CD16 PE, CD45 FITC,
CD56 PE, and CD69 PE-Cy7) (Immunotech, Marseille, France and Dako, Glostrup, Denmark) was
added to the assay media. The phycoerythrin-labeled antibody that is specific to CD69 was used to
detect activated immune cells. The antibodies that specifically bind to CD56 and CD16 were used
to detect natural killer (NK) cells; antibodies that specifically react with CD45 were used to detect
all types of lymphocytes; and antibodies that are specific to CD3 were used to detect T lymphocyte
cells. Granulocytes were gated on the basis of their characteristic forward scatter (FSC) and side scatter
(SSC) profiles, which represent size and granularity, respectively. The activation of immune cells in
response to myxoxanthophyll treatment at 24 h was shown as a shift to the right in the representative
histograms. The CD69 expressions on activated cells are shown as mean fluorescent intensity (MFI)
values. The activation index (AI), which presents the values of activation, was calculated by dividing
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the percentage of activated cells in response to myxoxanthophyll treatment by that of the control.
Values higher as AI ≥ 2 were defined as a positive immune cell response. A Cytomics FC500 flow
cytometer (Beckman Coulter, Brea, CA, USA) was used for the analysis, and the obtained data were
analyzed by CXP analysis software (Coulter Electronic, Miami, FL, USA). Fluorescence signals from
10,000 events were obtained and presented as logarithmically amplified signals. Every AI value was
calculated as the average from three measurements on three different blood samples.

2.8. Statistical Analysis

The one-way Anova test (p < 0.05) was applied to determine whether there was a difference among
means. Student’s t-test was used to compare control and test sample at ** p < 0.01 and *** p < 0.001.
A Statistical Package S-Plus 2000 was used for the analysis.

3. Results and Discussion

3.1. Development and Application of the HPCCC Method

In this study, the solvents n-heptane, ethanol and distilled water were mixed in different proportions
(Table 1) to create several biphasic solvent systems, which were tested for their capacity to be employed
in the separation of myxoxanthophyll. First, an adequate biphasic solvent system must provide a
proper K value (0.5 ≤ K ≤ 3) [15] to allow a good separation of the target compound in HPCCC.
Compounds with smaller K values are eluted closer to the solvent front showing lower resolution,
whereas a larger K value gives better resolution, but wider peaks and more dilute peak fractions,
because of a later elution time. Second, one of the phases of the suitable biphasic solvent system,
which was selected as the stationary phase, should be retained sufficiently within the column to permit
the separation process. This latter requirement is met as long as the selected biphasic solvent system has
a settling time t < 30 s [10] and an appropriate density difference (>0.08 g/mL) between the lower (LP)
and upper (UP) phases of the selected biphasic solvent system [15]. As observed in the Table 1, system 7
met those requirements; therefore, it was selected for the HPCCC isolation of myxoxanthophyll. The K
value (1.517, UP/LP) of the target compound provided by the selected biphasic solvent system (Table 1)
indicated a higher affinity of the target compound to the upper phase. This means that if using the
upper phase as mobile phase, the target compound would elute closer to the solvent front with a lower
resolution. Therefore, in this study, the lower phase of the selected biphasic solvent system was used
as the mobile phase, whereas the upper phase was the stationary phase.

Table 1. The partition coefficient (K) of myxoxanthophyll in different biphasic solvent systems, density
differences and the settling times.

Solvent
Systems Composition Relative Proportions

of Solvents (v/v/v)
Phase Volume
Ratio (UP/LP)

Settling
Time (s)

Density Difference
(LP−UP, g/mL)

Partition Coefficient
(K) of MYX

1 n-Hep–EtOH–H2O 5:4:0.5 0.93 8 0.11 0.019
2 n-Hep–EtOH–H2O 5:4:1 1.00 9 0.15 0.025
3 n-Hep–EtOH–H2O 5:4:1.5 0.94 8 0.17 0.045
4 n-Hep–EtOH–H2O 5:4:2 0.96 9 0.19 0.092
5 n-Hep–EtOH–H2O 4:4:2 0.75 16 0.19 0.200
6 n-Hep–EtOH–H2O 3:4:3 0.47 11 0.20 0.736
7 n-Hep–EtOH–H2O 2:4:4 0.30 12 0.22 1.517

LP: Lower phase. UP: Upper phase. MYX: myxoxanthophyll.

The rotational speed of the HPCCC column was established at 1400 rpm. In HPCCC, it is well
known that the higher the stationary phase retention inside the column, the better the chromatographic
resolution [22]. Sample loading and flow rate are two operational parameters that can positively
influence the final yield in HPCCC, however, care must be taken not to overload the sample or
increase the flow rate too much, as this can lead to the loss of the stationary phase from the column,
which would then be detrimental to the chromatographic resolution [15]. The flow rate of the mobile
phase was plotted against the stationary phase retention at a rotational speed of 1400 rpm (Figure 2).
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The stationary phase retention was calculated as previously reported [18] using Equation (1) (described
in Section 2.3.3). As can be seen in Figure 2, the flow rate of 4 mL/min was selected since it would allow
maximum productivity while maintaining 75% of the stationary phase retention within the column.
This condition generated a pressure below the maximum level allowed for the column (<250 psi).
We observed that 70 mg of biomass extract was the maximum possible amount to be dissolved in
2 mL of stationary phase (2 mL sample loop), since this was its saturation point. Accordingly, 70 mg
of sample loading and a flow rate of 4 mL/min were used in this study. Another advantageous
aspect of HPCCC is that the retention time of a given target compound can be calculated when
the K value and the volume of the stationary phase at the equilibrium are known. In the current
study, the retention time of the target compound was estimated as previously established [18] using
Equation (2) (described in Section 2.3.3). Therefore, myxoxanthophyll should have a retention time
of 46 min. This information is useful in order to estimate a priori the amount of solvent required for
the chromatographic process, and it also provides information on the duration of the HPCCC run.
As seen in Figure 3, a good separation of myxoxanthophyll was achieved when injecting 70 mg of
the sample. In addition, the experimentally determined retention time of the target compound was
40 min (Figure 3), which roughly matches with the previously predicted retention time. This slight
discrepancy could occur due to a decrease in the stationary phase retention during the separation
process, which may be caused by the sample effect over the hydrodynamic equilibrium.
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Figure 2. Effect of the mobile phase flow rate over the stationary phase retention. Mobile phase: Lower
phase of the biphasic solvent system 7 (n-Hep:EtOH:H2O, 2:4:4, v/v/v).
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Figure 3. High performance countercurrent chromatography (HPCCC) separation of myxoxanthophyll
from Synechocystis salina (S. salina) extract. Biphasic solvent system: System 7 (n-Hep:EtOH:H2O, 2:4:4,
v/v/v). Elution mode: Reverse, the mobile phase is the lower phase of the biphasic solvent system 7.
Loading per injection: 70 mg of S. salina extract. Column rotational speed: 1400 rpm. Flow rate of
mobile phase: 4 mL/min. Temperature: 28 ◦C. Detection: 478 nm.

At this point of the investigation, an efficient HPCCC method to isolate myxoxanthophyll from
S. salina extract was successfully developed employing the reverse phase elution mode. This means
that the lower phase of the selected biphasic solvent system is used as the mobile phase. However,
the developed method only involved a single sample injection (70 mg). Accordingly, in order to
increase the productivity of the developed method, a multiple-injection system was implemented.
In this approach, the hydrodynamic equilibrium needed to obtain the target compound in the first run
was re-established without having to stop the rotation of the column to prepare the equipment for a new
process. This is achieved using the co-current elution mode, which is performed by simultaneously
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pumping the mobile and stationary phases after the myxoxanthophyll elution. Previous investigations
have reported the successful application of co-current elution mode using HPCCC to produce lutein [23]
and astaxanthins [24] from microalgae. In the current study, the lost volume of stationary phase
during the first run (75 mL) was efficiently replenished when pumping stationary and mobile phases
at flow rates of 1.5 and 2.5 mL/min, respectively, for 50 min, and shortly after the myxoxanthophyll
elution. Consequently, the hydrodynamic equilibrium within the column was newly achieved for
a new separation cycle. In conclusion, based on the previously mentioned criteria and conditions,
the feasibility of applying a multiple injection HPCCC method to produce myxoxanthophyll from
S. salina has been demonstrated.

Based on the developed method for obtaining myxoxanthophyll from S. salina, the consecutive
injections of biomass extract for the continuous production of this pigment were applied. As seen in
Figure 4, four consecutive injections were successfully performed when using the previously optimized
conditions. An amount of 70 mg of the extract from S. salina was injected in each HPCCC run, with each
separation cycle lasting 110 min. In total, 280 mg of the S. salina extract was processed and yielded
20 mg of myxoxanthophyll with a purity of 95%, as determined by HPLC. The HPLC chromatogram
of the isolated compound by HPCCC (Figure 5b) shows the presence of two minor peaks (1 and 2)
eluting shortly after the target isolated compound. Accordingly, a final purification step was necessary.
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Figure 4. Isolation of myxoxanthophyll by a multi-injection HPCCC method. Biphasic solvent
system: System 7 (n-Hep:EtOH:H2O, 2:4:4, v/v/v). Elution modes: Reverse (RM) and co-current (CM)
elution modes. Loading per injection: 70 mg of S. salina extract. Runs: 4 consecutive injections. MP:
mobile phase (lower phase of system 7). SP: stationary phase (upper phase of system 7). Rotational speed:
1400 rpm. Column temperature: 28 ◦C. Detection 478 nm.
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chromatograms of S. salina extract (a), myxoxanthophyll fraction obtained by HPCCC (b), and
myxoxanthophyll further purified by HPLC (c). The chromatograms were monitored at 478 nm. 1: (13
or 13′-cis)- myxoxanthophyll. 2: (9 or 9′-cis)- myxoxanthophyll.

3.2. Final Purification of Myxoxanthophyll Fraction by Semi-Preparative HPLC

The myxoxanthophyll fraction obtained by means of HPCCC was finally purified using
semi-preparative HPLC. The resulting compound was dried using a rotary evaporator obtaining
15 mg of myxoxanthophyll and further analyzed by HPLC (Figure 5), demonstrating a purity over
98%. In contrast to previous investigations reporting the isolation of myxoxanthophyll from natural
sources [8], this is the first report showing the isolation of this glycosylated carotenoid from S. salina
using HPCCC. The complementarity and orthogonality of HPCCC and HPLC [15,24] made the
separation of this pigment possible.

3.3. Identity Confirmation of the Isolated Target Compound

The identity of the target compound was determined on the basis of its UV-Visible (Figure 6a) and
ESI-HRMS (Figure 6c,d) spectra in comparison to the literature data [8]. The ESI-HRMS spectrum of the
target compound peak indicated a molecular formula, such as C48H70O7, and a cation radical molecular
ion [M]+ at m/z 758.5127 (accuracy −1.4 ppm) (Figure 6c). The ESI-HRMS/MS fragmentation of the cation
radical molecular ion gave a fragment ion at m/z 700 (Figure 6d), corresponding to the cleavage of an acetone
unit (C3H6O) in the cation radical molecular ion, a fragment ion at m/z 525 corresponding to the carotenoid
backbone resulting after the cleavage of the sugar moiety, and a fragment ion at m/z 507 formed by the
loss of water from the fragment ion at m/z 525, which are in agreement with the fragmentation pattern
of (all-trans)- myxoxanthophyll as (3R,2S)-myxol 2′-(2,4-di-O-methyl-α-L-fucoside) [8,25]. The two minor
contaminants present in the myxoxanthophyll fraction obtained by means of HPCCC (Figure 5b) exhibited
ESI-HRMS/MS spectra similar to those of (all-trans)-myxoxanthophyll, but with UV-Visible spectra that were
compatible with those of (13 or 13′-cis)- myxoxanthophyll (1) (Figure 6b) and (9 or 9′-cis)- myxoxanthophyll (2)
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showed a moderate dose-dependent effect on the free radical DPPH when compared to the positive 
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Figure 6. Ultraviolet-visible (UV-Vis) spectra of (all-trans)-myxoxanthophyll obtained by HPCCC
(a). Ultraviolet-visible (UV-Vis) spectra of 1 (13 or 13′-cis)-myxoxanthophyll and 2 (9 or
9′-cis)-myxoxanthophyll (b). High-resolution mass spectrometry with electrospray ionization (ESI)
source (ESI-HR/MS) spectrum of (all-trans)-myxoxanthophyll (c). High-resolution tandem mass
spectrometry with electrospray ionization source (ESI-HRMS/MS) spectrum of the molecular ion of
(all-trans)-myxoxanthophyll (d).

3.4. Biological Activity

Recently, there has been a rising interest in exploring the beneficial effects of carotenoids in the
healthcare and cosmetic industries [27]. The health benefits of carotenoids are explained by their capacity
to scavenge free radicals, which are related to aging and chronic diseases [28]. Epidemiological studies
support the observation that adequate carotenoid supplementation may significantly reduce the
risk of several disorders mediated by free radicals [29]. On the other hand, melanogenesis is a
process to synthesize melanin, which is primarily responsible for the pigmentation of human skin,
eye and hair. As tyrosinase plays a major role in melanin synthesis, the inhibition of this enzyme
is a common approach in developing anti-melanogenetic agents for skin-whitening cosmetics [30].
In the present study, the capacity of myxoxanthophyll to scavenge the free radicals showed a moderate
dose-dependent effect on the free radical DPPH when compared to the positive controls Trolox and
astaxanthin (Figure 7a). As far as the tyrosinase inhibition was concerned, myxoxanthophyll showed a
mild inhibiting effect in a concentration non-dependent manner in the concentration range from 10
to 200 µM (Figure 7b). Although myxoxanthophyll showed only a weak antioxidant and tyrosinase
inhibitory effect, its biological effects on other types of free radicals, as well as over other kind of
tyrosinase, should still be tested to determine a more comprehensive biological profile of this carotenoid.
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astaxanthin, by improving the proliferation and functions of the immune cell, have been previously 
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treatment was investigated, measuring cell surface CD69 expression using flow cytometry. The CD69 
glycoprotein is an early activation antigen that is expressed on activated immune cells. Once CD69 is 
expressed on T lymphocyte cells, it co-stimulates T-cell activation and proliferation. CD69 is also 
indubitably expressed by B lymphocyte cells, NK cells, monocytes, neutrophils, and eosinophils [33]. 
This feature has been used to ascertain the immune-stimulating properties of plants using in vitro 
[21,34–37] and in vivo studies [38]. As seen in Figure 8, except for granulocytes, no immune cells tested 
in this investigation were activated by myxoxanthophyll at the concentration range from 20 to 60 μM. 
The CD69 expression on activated granulocytes in response to myxoxanthophyll treatment was 
shown as a shift to the right in the representative histograms (Figure 8c,d). There was an increase in 
the number of granulocytes in response to myxoxanthophyll treatment, showing a stimulation index 
of 2.37 and 2.77 when using the target compound at 20 and 60 μM, respectively. Granulocytes (i.e., 
neutrophils, eosinophils, basophils, and mast cells) are effector cells of the innate immune response 
against bacterial and fungal infections. These cells identify, ingest and destroy microbial pathogens 
through receptors, oxidative mechanisms, and enzymes including lysozyme, collagenase, and 
elastase [39]. The data presented in this study may support the potential utilization of 
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Figure 7. (a) The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity of the tested
substance. Trolox and astaxanthin were used as positive controls. (b) Inhibition of the fungal tyrosinase
by myxoxanthophyll using levodopa (L-DOPA) as a substrate. Kojic acid was used as a positive
control. The data represent mean±SD. Student’s t-test was used for the statistical analysis. ** p < 0.01,
*** p < 0.001 related to control.

The immunomodulating activity of carotenoids such as β-carotene, canthaxanthin and astaxanthin,
by improving the proliferation and functions of the immune cell, have been previously reported [31,32].
However, the effect of myxoxanthophyll on the immune system is unknown. In the present study,
the potential activation effect on immune cells in response to myxoxanthophyll treatment was
investigated, measuring cell surface CD69 expression using flow cytometry. The CD69 glycoprotein is
an early activation antigen that is expressed on activated immune cells. Once CD69 is expressed on T
lymphocyte cells, it co-stimulates T-cell activation and proliferation. CD69 is also indubitably expressed
by B lymphocyte cells, NK cells, monocytes, neutrophils, and eosinophils [33]. This feature has been
used to ascertain the immune-stimulating properties of plants using in vitro [21,34–37] and in vivo
studies [38]. As seen in Figure 8, except for granulocytes, no immune cells tested in this investigation
were activated by myxoxanthophyll at the concentration range from 20 to 60 µM. The CD69 expression
on activated granulocytes in response to myxoxanthophyll treatment was shown as a shift to the right
in the representative histograms (Figure 8c,d). There was an increase in the number of granulocytes in
response to myxoxanthophyll treatment, showing a stimulation index of 2.37 and 2.77 when using the
target compound at 20 and 60 µM, respectively. Granulocytes (i.e., neutrophils, eosinophils, basophils,
and mast cells) are effector cells of the innate immune response against bacterial and fungal infections.
These cells identify, ingest and destroy microbial pathogens through receptors, oxidative mechanisms,
and enzymes including lysozyme, collagenase, and elastase [39]. The data presented in this study may
support the potential utilization of myxoxanthophyll for strengthening the immune system against
bacterial and fungal infections.
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Figure 8. Mean fluorescent intensity (MFI) of CD69 expression on activated immune cells from human 
peripheral blood in response to treatment with myxoxanthophyll for 24 h is shown as histograms. 
The filled histograms (dark grey) represent the group control (untreated) and the other histograms 
(light grey) the stimulated (pretreated) group. The mitogen phytohemagglutinin (PHA) was used as 
a positive control, showing the activation of immune cells (a). In negative control, the cells were 

Figure 8. Mean fluorescent intensity (MFI) of CD69 expression on activated immune cells from human
peripheral blood in response to treatment with myxoxanthophyll for 24 h is shown as histograms.
The filled histograms (dark grey) represent the group control (untreated) and the other histograms
(light grey) the stimulated (pretreated) group. The mitogen phytohemagglutinin (PHA) was used
as a positive control, showing the activation of immune cells (a). In negative control, the cells were
treated neither with myxoxanthophyll nor PHA, and no immune cell activation was observed (b).
Granulocytes were activated by myxoxanthophyll at 20 µM (c) and 60 µM (d). The histograms are
representative of three separate experiments using cells from three different healthy donors.

4. Conclusions

Most efforts aimed at obtaining pigments from microalgae have been addressed separately, either at
the level of biomass production or extraction operations. The current study presents an isolation
approach based on a sequential separation HPCCC process integrated to autotrophic cultivation of
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the cyanobacterium S. salina for obtaining myxoxanthophyll. Compared to the multi-step procedures
used to date to obtain this compound, the present approach uses only a single type of separation
technique. As the target compound obtained in this process has potential applications in the food or
nutraceutical sectors, the evaporation and drying operations involved in this process ensured that no
residual solvent remained in the final product. This pigment could have applications as a potential
nonspecific immune stimulator. Overall, the developed HPCCC method represents a good strategy to
efficiently isolate myxoxanthophyll from the cyanobacterium S. salina and can serve as a reference for
developing a large-scale production model of cyanobacteria–based myxoxanthophyll. In comparison to
liquid–solid chromatography where a solid stationary phase is used, no expensive columns are required
in countercurrent chromatography. Therefore, the use of HPCCC for the large-scale production of
myxoxanthophyll is foreseen to lead to significant cost savings. In future, this strategy may converge
towards a bio-refinery approach with potential for expansion and diversification in terms of other
valuable co-products.

Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8739/7/4/73/s1,
Figure S1: Growth curve of S. salina in 120 L flat panel photobioreactor.
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35. Cheel, J.; Onofre, G.; Vokurková, D.; Tůmová, L.; Neugebauerová, J. Licorice infusion: Chemical profile and
effects on the activation and the cell cycle progression of human lymphocytes. Pharmacogn. Mag. 2010, 6,
26–33. [CrossRef] [PubMed]

36. Wagner, H.; Jurcic, K. Immunological studies of Revitonil®, a phytopharmaceutical containing Echinacea
purpurea and Glycyrrhiza glabra root extract. Phytomedicine 2002, 9, 390–397. [CrossRef] [PubMed]

37. Zwickey, H.; Brush, J.; Iacullo, C.M.; Connelly, E.; Gregory, W.L.; Soumyanath, A.; Buresh, R. The effect of
Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD25 expression in humans: A pilot
study. Phytother. Res. 2007, 21, 1109–1112. [CrossRef] [PubMed]

38. Brush, J.; Mendenhall, E.; Guggenheim, A.; Chan, T.; Connelly, E.; Soumyanath, A.; Buresh, R.; Barrett, R.;
Zwickey, H. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69
expression and immune cell activation in humans. Phytother. Res. 2006, 20, 687–695. [CrossRef] [PubMed]

39. Aristizábal, B.; González, Á. Innate immune system. In Autoimmunity: From Bench to Bedside; Anaya, J.M.,
Shoenfeld, Y., Rojas-Villarraga, A., Levy, R.A., Cervera, R., Eds.; El Rosario University Press: Bogota,
Colombia, 2013; pp. 31–46. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459455/ (accessed on
15 October 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/jf050926w
http://www.ncbi.nlm.nih.gov/pubmed/16302770
http://dx.doi.org/10.3390/md16010026
http://www.ncbi.nlm.nih.gov/pubmed/29329235
http://dx.doi.org/10.1042/bj2190001
http://dx.doi.org/10.3390/nu6020466
http://dx.doi.org/10.1080/14756366.2016.1256882
http://dx.doi.org/10.1016/S0192-0561(97)85558-0
http://dx.doi.org/10.1017/S0029665199000932
http://dx.doi.org/10.1002/stem.5530120502
http://dx.doi.org/10.1016/j.foodchem.2010.02.060
http://dx.doi.org/10.4103/0973-1296.59963
http://www.ncbi.nlm.nih.gov/pubmed/20548933
http://dx.doi.org/10.1078/09447110260571616
http://www.ncbi.nlm.nih.gov/pubmed/12222657
http://dx.doi.org/10.1002/ptr.2207
http://www.ncbi.nlm.nih.gov/pubmed/17661330
http://dx.doi.org/10.1002/ptr.1938
http://www.ncbi.nlm.nih.gov/pubmed/16807880
https://www.ncbi.nlm.nih.gov/books/NBK459455/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Biomass Production 
	Extract Preparation 
	Separation of Myxoxanthophyll Using HPCCC 
	HPCCC Equipment 
	Selection of the Suitable Biphasic Solvent System for HPCCC 
	HPCCC Separation Process 

	Final Purification of the Myxoxanthophyll Fraction by Semi-Preparative HPLC 
	HPLC-DAD Analysis of Extract and Fractions 
	Confirmation of the Chemical Identity of the Purified Target Compound 
	Biological Evaluations 
	DPPH Free Radical Scavenging Activity 
	Inhibition of Tyrosinase Activity 
	Immune Cell Activation 

	Statistical Analysis 

	Results and Discussion 
	Development and Application of the HPCCC Method 
	Final Purification of Myxoxanthophyll Fraction by Semi-Preparative HPLC 
	Identity Confirmation of the Isolated Target Compound 
	Biological Activity 

	Conclusions 
	References

