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1. Introduction
1.1. Nitrogen fixation and its influence in the environment

Biological nitrogen fixation (hereafter “N, fixation”) is the dom-
inant source of reactive nitrogen (N) in the Earth system, far
exceeding abiotic sources from lightning [1-4]. It provides
bioavailable N to the biosphere supporting organismal growth of
various trophic levels and human lives (Fig. 1). On land, bioavail-
able N (fixed by e.g., Rhizobium [5-8] and free-living bacteria
[4,7-9]) is transferred to the primary producers (e.g., plants,
cyanobacteria), which are then transferred to consumers. N, fixa-
tion is of special interest in agricultural sectors [7-10], since it is
an environmentally sustainable source of bioavailable N, reducing
the use of fertilizer, which is economically and environmentally
costly [8-10].

In the ocean, the majority of N, fixation is performed by
prokaryotic phytoplankton, which is then consumed by larger
plankton and by fish, some of which are consumed by human
beings (Fig. 1). The fixed N released (often combined with C) from
these organisms is a component of ecosystem N inputs [11,12]. It
has been estimated that about a half of fixed, or bioavailable N,
originates from microbial N, fixation, important also for the cou-
pled the C cycle [1,13]. A greater oceanic inventory of fixed N
may increase the primary production [11,14,15] and export of
organic C to the deep ocean [11,14].

1.2. Key controls for N, fixation and their management at a cellular
level

Although N, fixation has an influence at the ecosystem scale,
the rate of N, fixation is constrained at a cellular level. In this sec-
tion we explore major limiting factors (i.e. reduced C, inorganic
nutrients and O,) and how the cells acquire and manage them.
These are the key factors in the development of the models for
N, fixing organisms (hereafter N, fixers).

1.2.1. Reduced C

N, fixation requires electrons and energy:
N, + 8¢ + 10H" + 16ATP + 16H,0

— 2NH, + H> + 16ADP + 16P;
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Reduced C, such as carbohydrates and lipids, provides the elec-
trons and energy for N fixation, thus influencing the rate of N, fix-
ation, especially when C is limited and/or other nutrients are
abundant. Organic carbon is oxidized by metabolic processes
(e.g., TCA cycle), providing reducing agents (e.g., NADH) [16-19],
which are used to transfer electrons to nitrogenase [20-22]. Such
reducing equivalents donate electrons to the electron transport
chain and ATP synthesis [16,17], the energy carrier for stepwise
reduction of N, to ammonia (NH3) [23,24], most of which is
instantly converted to ammonium (NH3) at typical intracellular
cellular pH.

There are three main ways to acquire organic C (Fig. 2A). One is
from the external environment (heterotrophic C acquisition),
which is common in soil [9] and sediments [25], but recognized
in the open ocean as well [26]. In this case, the availability of
organic C limits the rate of N, fixation [27]. The second way is
through photosynthesis, in which light energy is used to separate
electrons from water, which in turn is used for reducing CO,
[16-18]. In this way, the cells can access a ubiquitous source of C
but light availability is essential and thus the process is limited
to the day time in the surface ocean. The third way is through sym-
biosis with photoautotrophic organisms, such as plants and phyto-
plankton [28-32]. The photoautotrophic hosts provide C to the N,
fixer, and in return, the N, fixers provide fixed N to the host.

1.2.2. Phosphorus and iron

Phosphorus (P) and iron (Fe) are also important for N, fixation
[33-38]. Fe is an essential trace metal for N, fixation as it forms
co-factors for nitrogenase (nitrogen-fixing enzyme) [23,24]. P, on
the other hand, influences the rate of N, fixation rather indirectly,
as it is used for various parts of the cells that holds nitrogenase,
such as cell membrane, ATP (energy transferring molecule), DNA
and RNA [16-19]. We note that nitrogenase requires other trace
metals such as molybdenum (Mo) and vanadium (V) [24,39-42].
In this review, we focus on Fe, since it has been more explicitly rep-
resented in quantitative models.

Inorganic forms of these nutrients are transported into the cell
by transporters [43-45], since these molecules are generally
charged in water (e.g., PO3~, Fe?*) and do not usually go through
cell membrane. Cells have various strategies for acquiring these,
such as the use of high affinity transporters for POz~ [43,46] and
physical attachment to Fe rich particles [47]. Some cells live within
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Fig. 1. N flows in (A) terrestrial and (B) marine systems. “N” indicates fixed N whereas “N,” indicates dinitrogen gas.

other microbial cells or are symbiotic to plants [28-32], potentially
acquiring these molecules from the hosts. We note that organic P
[43,46,48] and Fe associated with organic molecules [49-52] can
also be used by N, fixers.

1.2.3. 0,

0, is essential for respiration but is rather detrimental for N,
fixation [53-55]. Especially, under normal aquatic O, concentra-
tions, the Fe protein in nitrogenase complex loses its activity irre-
versibly [54]. Thus, N, fixing cells must create a low oxygen
environment in the cytoplasm, where nitrogenase exists, to enable
N, fixation. This is particularly challenging for photosynthetic N,
fixers since photosynthesis produces O, [16-19]. One simple way
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to avoid it is to fix N, during the night [56-59] (Fig. 2B). Because
photosynthesis requires light and only occurs during the day, the
dark period is an ideal time for N, fixation. However, this strategy
is not universal; some photoautotrophic organisms fix N, during
the day (e.g., Trichodesmium and Anabaena) [60-63]. Some of these
organisms (e.g., Anabaena) form filaments and have differentiated
cells (heterocysts) for N, fixation [64,65], segregating the sites of
photosynthesis and N, fixation.

Although these strategies are effective in managing photosyn-
thetically originated O,, they may not be sufficient, since the
non-polar O, molecules can diffuse into the cell from the external
environment [66,67]. O, in the environment is often high (e.g.,
generally > 150 uM in the surface ocean [68-70] and nearly satu-
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Anabaena, Trichodesmium (predicted [83,84]). Respiratory protection: Azotobacter, Crocosphaera (predicted [75,85]), Trichodesmium (predicted [83]). Living in low O,
environment, Clostridium. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

rated (~20% O,) in the shallow layers of soil [71]), which creates
gradient of O, concentration that favors O, flows from the external
environment into the cell (Fick’s first law of diffusion).

One way that organisms manage this problem is to create a bar-
rier around the cytoplasm (Fig. 2B) [64,72,73]. Such a barrier would
minimize the O, diffusion and allow the cells to keep the steep gra-
dient of O, between the cytoplasm and external environment.
However, an excessive barrier could also limit the diffusive source
of N,. Another way to manage O, is respiratory protection (i.e. res-
piration to reduce intracellular O,) [53,74]. Even if there is a high
0, flux into the cell, if the rate of respiration matches the flux, a
low intracellular O, can be maintained [27,53,75]. Finally, there
are organisms that live in low O, environments such as in sedi-
ments [25,76,77] and Oxygen Minimum Zones in water columns
(OMZs) [78], circumventing the O, problem. Some symbiotic sys-
tems may provide local environments with low O, [79,80]. The
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threshold of environmental O, below which N, fixation occurs
depends on the potential level of respiration and other O, manage-
ment mechanisms (such as O, barrier) [53].

1.3. Quantitative modeling of N, fixers

To quantify the activities of N, fixers and the effect of the fac-
tors controlling N, fixation, extensive measurements have been
conducted in the open ocean [86-88] and on land [10,89,90]. To
study the physiology of N, fixers, a significant number of experi-
ments and in situ observation have also been conducted
[9,91,92]. However, there are still significant unknowns and exper-
iments/observations are generally costly and many properties are
difficult to measure: even major methods for measuring the rate
of N fixation have been questioned [93-97] and it is still challeng-
ing to directly measure the intracellular concentration of O,, which
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is detrimental to nitrogenase, the N, fixing enzyme complex
[53,54].

Quantitative models (see Table 1 for the definition) have been
used to complement biological measurements, providing mathe-
matical theories to interpret observations, formulate new hypothe-
ses, and make predictions where data are missing (Fig. 3). For
example, based on the model of simple cellular metabolisms as
well as the available environmental factors (such as nutrient, light
and temperature), models may predict the rate of N, fixation as
well as intracellular concentration of O, as well as the fate of intra-
cellular C or cellular growth [27,53,83,98-100]. Such models of N,
fixers can be used to quantitatively interpret experimental data
(e.g., what controls the growth or N, fixation rates of cells at a cer-
tain time point or under a certain condition?). They can also be
implemented in larger-scale ecosystem simulations, such as terres-
trial [101-103] and regional [104,105] and global [106,107] ocean
models, which are used for interpreting in situ observations of bio-
geography and N, fixation rates [88,106,108-110] and for predict-
ing changes in global ecosystems (such as plankton competitions
and food transfers) [104,106], biogeochemical cycles (such as N,
C, and trace metal cycles) [104,107,111,112], and climate [113-
117].

2. Type of model

A number of models have been developed to express physiology
of N, fixers, but they can broadly fit into one of the three groups:
simple equations (analytical theory with relatively small number
of equations and variables), coarse-grained models, and detailed
metabolic models (Fig. 4). The resolution of metabolic processes
increases in this order, but computation becomes less efficient
(i.e. taking longer time for the same amount of computational
power) and model-data comparison becomes harder. These three
types of models are complementary to each other and are used
for different purposes. We describe each type with examples in
the following part.

Quantitative models of
N,-fixing organisms

<_

Formulate new hypothesis
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Table 1
Some modeling terms and definitions in this paper.

Name Definition

Quantitative model A mathematical description combined with
quantification of a phenomenon, often solved by
computers. In this paper, we simply use a term
“model” for such a model. The antonym for this
term is “qualitative model”, which describes
phenomenon without numerical evaluation. In this
paper we focus on quantitative approaches.
Biogeochemical model A mathematical description or simulation of
biologically, chemically and physically mediated
elemental and chemical fluxes in the environment.
Typically focused on ecosystem and global scales,
and relationships with the Earth’s environment. In
global-scale biogeochemical simulations,
biological growth and activities are generally
highly simplified and often implicit.

Ecological/Ecosystem
model

A model that simulates the growth and activities of
biological organisms (generally two or more) in a
particular environment (from regional to global
scales).

A model that simulates the metabolism of
microbial cells, resolving fluxes and sometimes
reservoirs of molecules within the cell.

Cellular/Physiological/
Metabolic model

Optimization model A model in which parameters are tuned
systematically in order to best match observed
states or to fulfill certain conditions, such as
maximization of a certain output (e.g., biomass

production).

Slash “/” in the name indicates that we use these terms interchangeably.

2.1. Simple equations

The simplest category of models describes populations and
rates with only a few equations, often used as a part of the ecolog-
ical models. Good examples are Monod-type (Michaelis-Menten

Provide quantitative interpretations
of observations and experimental data

!

=

Predict phenomenon
where data are missing

Provide physiological modules
for larger-scale models

Interpret larger-scale pheomenon
e.g. ecology, biogeochemitry, climate

Fig. 3. Roles of quantitative models of N, fixers. Arrows indicate causes and effects.
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Fig. 4. Schematics of three different types of models. pimax: maximum growth rate. K: half saturation constant for growth based on nutrient concentration following Monod
kinetics [118], widely used in ecosystem modeling [102,104,107,124]. Examples of coarse-grained model and detailed metabolic model include Cell Flux Model (CFM)
[53,75,83,121]. One widely used detailed metabolic model is Flux Balance Analysis (FBA) [135-138].

like saturating relationship) equations [118] used in ecosystem
models (see Table 1 for the definition) [104,106,119], where the
growth rate is described as a simple function of external environ-
mental factors, such as light, temperature and nutrients. The rate
of N, fixation can be calculated based on the growth and elemental
stoichiometry of the cells. Specifically, these models compute N,
fixation by multiplying the growth rate, biomass N per cell, and cell
population such that N, fixation is implicitly sufficient to meet
nitrogen demand. In such models, intracellular properties, such
as elemental stoichiometry of cells and macromolecular alloca-
tions, are generally assumed constant, despite the fact that in real-
ity they generally vary significantly [120-123].

Despite their simplicity, simple equations are the main way to
express physiology of N, fixers in large-scale models, such as ocean
ecosystem models [104,106,119,124]. One key reason is computa-
tional efficiency; more complex biological descriptions require
more state-variables and more computational operations, thus
increasing both memory and processing demands which can
become prohibitively expensive. Although highly idealized, these
ecosystem models with simple equations seem to broadly capture
the observations [104,106,110,125]. Here, it is assumed that the
growth rates of N, fixers are not limited by N but by P and Fe,
allowing them to acquire a niche where N is scarce. In general,
the effects of the “end product suppression” by fixed N are not con-
sidered, despite its potential importance. Using the simplified
equations, we can connect to ecological theory for the shaping of
communities: under steady state conditions the simplified equa-
tions lead to a resource supply ratio theory, suggesting that the
niches of N, fixers are constrained based on the ratio of nutrient
sources (specifically N, P, Fe) [34,126].

Idealized mathematical descriptions (simple equations) are also
developed and employed for terrestrial simulations. Some models
simply assume that the rate of N, fixation is proportional to the
amount of biomass [103,127-129]. Other models assume that the
rate of N, fixation is a function of temperature [101,130]. Similar
to ocean models, Michaelis-Menten type equations are often used,
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where the rate of N, fixation is calculated based on the available C
and N [102]. It is noteworthy that most models are formulated in
the context of symbiosis with plants [102,103,127,128] due to
the existence of wide-spread plants-Rhizobium symbiosis. In the
context of symbiosis, some terrestrial models relate net primary
production [89,131,132] or evapotranspiration [89,133] of plants
to the rate of N, fixation. The net primary production of the host
plant has been modeled based on the cost for N, fixation and light
availability [134]. Whereas most models are developed in the con-
text of symbiosis, there are models that combine both symbiotic
and non-symbiotic N, fixation, prescribing different temperature
functions to each type [101,130].

Simple models have the advantage of mathematical trans-
parency; they are easier to interpret and apply. They are also com-
putationally cheap for global-scale biogeochemical applications.
On the other hand, they may gloss over many processes which
are known to be important and they are usually not easy to cali-
brate or test with the exploding database of ‘omics observations
because the currencies of simple models tend not to translate sim-
ply into genes or transcripts. For example, gene-copy per cell is
highly variable taxonomically, thus hard to relate to biomass. Tran-
scription can be fleeting and highly taxonomically specific. One
way to exploit ‘omics data more directly is to develop models at
the genome-scale.

2.2. Detailed metabolic models

Detailed metabolic models are on the other side of the complex-
ity spectrum, since they include genome-scale simulations which
represent metabolic networks of hundreds of reactions (Fig. 4),
generally using FBA (Flux Balance Analysis) [135-138]. FBA is a
mathematical method for simulating a balanced metabolic flux
network of any size based on optimization of fluxes, which is done
by matrix computation. Many potentially viable network configu-
rations are possible in order to satisfy given boundary conditions
and optimization targets. Optimal network configurations are
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sought by maximizing biomass production [137,138], minimizing a
number of metabolic pathways [139,140] or other constraints. The
strength and a key application of such simulations is to predict
metabolic organization and fluxes from observed genomes
[135,141,142]. The volume of genome sequences is rapidly increas-
ing, enabling the application of FBA to a wide range of organisms
including N, fixers.

Despite the wide use of FBA, there are still challenges. First, the
model output is often hard to compare with data. It is rarely the
case that data to constrain hundreds of pathways are available
[143], and the comprehensive test of the output is challenging
and often highly qualitative. The models typically evaluate meta-
bolic fluxes but not the abundance of metabolites or macro-
molecules, which have been actively measured recently
([123,144-146]). Genome scale simulations may be computation-
ally demanding in order to find the optimum (see Table 1 for def-
inition) of thousands of solutions [135,138]. Although a genome-
scale FBA can be run on a laptop computer, current codes can take
seconds to minutes for a single solution, limiting their application
in large-scale ecosystem simulations. However, there have been
efforts to overcome this challenge (e.g., [147-149]).

2.3. Coarse-grained models

Coarse-grained models lie between the complexity of the sim-
plified equation and genome-scale FBA approaches described
above: they include more detailed physiologies than simple analyt-
ical equations may allow, but resolve fewer metabolic pathways
than the genome-scale simulations [150] (Fig. 4). Typically they
resolve an idealized and simplified representation of metabolic
pathways at the level of major cellular function including biosyn-
thesis, respiration and photosynthesis as well as N, fixation as a
whole [53,98,99,121,151]. These models are typically constrained
by conservation constraints on elemental, electron and energy
budgets [27,53,152,153]. Some coarse-grained models resolve
macromolecular allocation [121,122,154], which can be compared
with emerging sources of macromolecular and proteomics data.

Whereas there are variations in coarse-grained models, they
can be made computationally efficient and possibly incorporated
into larger models. Especially, optimization related loops within
the computational codes are not essential [75,83,121], which
would increase the computational load significantly. The imple-
mentation of a coarse-grained model of N, fixer in regional-scale
model has been recently done for a major marine N, fixer, Tri-
chodesmium [105]. The implementation of coarse-grained models
of N, fixers in global scale models has not been done, but is possi-
ble. Although comprehensive metabolic pathways may not be
reconstructed from genomic data as can be done for FBA, metabolic
pathways can be selectively included [155], creating variations in
the network of metabolic fluxes [27,75,153,156]. Compared to
other two types of models, coarse-grained models do not have a
set of “standard formulas” and can be flexibly modified for specific
purposes or available data: especially suited for bulk measure-
ments such as those from batch-cultures or chemostat-cultures
[58,85,123,146,157-159].

3. Modeled organisms

For obvious reasons, most physiological models have been
developed around “model organisms” which have been extensively
studied in laboratories. Here we discuss selected major model
organisms and group them based on the environment (terres-
trial/freshwater and marine), the modeling approaches applied,
(Fig. 5) and the inferences gained from those models.
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3.1. Nitrogen fixers in terrestrial and freshwater environments

Terrestrial N, fixers are classified broadly based on whether
heterotrophic or photoautotrophic and whether free-living or sym-
biotic (Fig. 5). Here we select key organisms for quantitative mod-
els and explore which modeling strategies have been applied.

3.1.1. Azotobacter

Key modeled free-living organisms are soil dwelling hetero-
trophic unicellular bacteria (Fig. 5), Azotobacter vinelandii, which
is also considered as “a model organism” in laboratory studies
[9]. During the latter half of the 20th century, simple equations
were used to describe the quantitative relationships between the
growth rate, yield and maintenance costs as well as substrate con-
centration [160,161]. Similarly, simple equations were applied to
the chemostat culture data of relationships between resource C:N
ratio and the rate of N, fixation under various O, concentrations
[162], where different parameters are prescribed for each O, con-
centration. Recently, a coarse-grained model (Cell Flux Model or
CFM) has been developed [27,53], which simulates these chemo-
stat data sets [161-163] with a single-set of parameters. This
model revealed a high C cost of respiratory protection (respiration
for reducing intracellular O, to protect nitrogenase, which is O,
sensitive) both under diazotrophic condition [53] and when NH}
is added to the culture [27]. Even when N, fixation did not occur
due to the addition of NHj, the respiratory protection occurs, sug-
gesting that respiratory protection is decoupled from N, fixation
[27]. The study provided a quantitative baseline for modeling the
direct and indirect costs of N, fixation more generally. During
the similar time period, FBA was applied to Azotobacter and
showed that O, availability affects TCA cycle, PP pathway and algi-
nate and P3HB (poly-3-hydroxybutyrate) biosynthetic fluxes [164].

3.1.2. Rhizobium

A major terrestrial symbiotic heterotrophic N, fixer is Rhizo-
bium, which creates bacteroids within the root nodules (legumes)
of plants (e.g., clovers and alfalfa) [165] (Fig. 5). The bacteroid fixes
N,, much of which is transported to the plants and supports their
growth. Several models have been developed based on simple
equations for various purposes. For example, simple equation
models representing symbiotic N, fixers in legumes [101-
103,127,130,134], have been used for various purposes including
estimation of the magnitude of terrestrial N, fixation.

As more genomics data for Rhizobium become available
[166,167], detailed metabolic models have also been developed.
Recently FBA was applied to Rhizobium [137] and showed different
metabolic regimes based on O, and carbohydrate update rates.
This FBA framework is further extended based on the genomics
and proteomics data [100]. However, coarse-grained type models
of these systems do not seem to exist, despite their potential ben-
efits. This might be due to the difficulty in bulk quantitative mea-
surements of bacteroid metabolism/properties as they are tightly
integrated in plant tissues, which would be essential in constrain-
ing the model.

3.1.3. Anabaena

Anabaena is a cyanobacterium (photo-autotrophic prokaryotic
alga) both free living and symbiotic with fern plant (Azolla)
[168-170]. We note that genus Anabaena has been renamed to
Dolichospermum but here we use the term Anabaena as it has been
more commonly used. They form a chain of cells (trichome)
(Fig. 5), within which there are heterocysts [64,171,172]. Specifi-
cally, heterocysts are visually distinct with thick glycolipid layers
on the cell membrane, which protects the cytoplasm and thus
nitrogenase from O, [65,73,173]. Some studies show that bacteria
specifically associated with heterocysts can provide respiratory
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protection from O, [174]. Heterocysts do not evolve O, since it
lacks functional photosystem II (PSII), which evolves O,, but can
harvest light energy with photosystem I (PSI) [64,65,175]. The light
energy harvested by PSI can be used for ATP synthesis based on the
cyclic electron flow and proton pumping, possibly supporting N,
fixation [176]. Other cells, termed vegetative-cells, photosynthe-
size during the day, providing fixed C to heterocysts [177].

A simple equation model of Anabaena has been developed pre-
dicting the growth rate based on temperature, light and phospho-
rus availability and its intracellular quota [178]. Also, a coarse
grained model of Anabaena has been developed, resolving the
clock-controlled and non-clock-controlled protein synthesis, cap-
turing the observed diurnal patterns of protein synthesis [179].
Later, these two models are combined, resolving heterocyst differ-
entiation based on a wide range of laboratory experiments [152].
We note that there have been various modeling efforts to predict
heterocyst development with various modeling complexities
[180-186]. There also exist models of simplified equations for pre-
dicting growth rates [180,187]. Furthermore, FBA has been applied
to Anabaena resolving both vegetative cells and heterocysts [188],
which suggests the importance of the exchange in metabolites in
achieving observed growth rates.
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3.2. Nitrogen fixers in marine environments

Although there is a wide variety of marine N, fixers, currently
most quantitatively modeled organisms are cyanobacteria (Fig. 5)
[75,83,99,153,189,190]. Since cyanobacteria produce O, through
photosynthesis, O, management is one key topic in modeling stud-
ies and is chiefly considered with coarse-grained models due to
their capability of quantifying intracellular molecules [75,83,191].
Here we explore three of the key N, fixers in the ocean [2,3] and
their distinct O, management strategies.

3.2.1. Trichodesmium

Trichodesmium is a filamentous multicellular N, fixer dis-
tributed across the ocean (Fig. 5) [2,3]. They fix N, during the
day, when O,-producing photosynthesis occurs [60,192]. The dis-
tribution of Trichodesmium has been predicted by various ecosys-
tem models [104,106,193,194] that express its physiology by
simple equations directly connecting external environments to
the rate of growth and N, fixation. In such models, it is generally
assumed that the uptake of fixed N is zero and the maximum
growth rate is smaller than non-N,-fixing counterpart as a handi-
cap for N,-fixing capability. Trichodesmium has also been modeled
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in a coarse-grained way, the beginning of which resolves the diur-
nal cycle of C and N, showing that N, fixation increases when the
availability of fixed N decreases [189]. More recently, a simplified
version resolves intracellular O, [83], predicting multiple O, man-
agement mechanisms, such as respiratory protection and barrier
against O,. An optimization based coarse-grained model resolving
C, N and P fluxes has also been developed [99], and incorporated
into regional marine ecological framework [105], showing that
low P availability favors N, fixation, which explains the presence
of N, fixation under high N:P supply ratios. There is also a model
that resolves Fe allocation as well as C concentrating metabolism
[195], predicting significant decrease in N, fixation by Tri-
chodesmium especially in Fe limited regions. Genome-scale FBA
has been applied to Trichodesmium predicting that about 15% of
cells are actively fixing nitrogen (diazotrophic), which is within
the range of observation, and about 30% of total fixed N leaks to
the environment [149].

3.2.2. Crocosphaera

Crocosphaera is a unicellular cyanobacterium (Fig. 5) mainly
found in oligotrophic oceans [2,3,196]. It fixes N, during the dark
[85], temporally avoiding O, evolving photosynthesis [60]. A pro-
teomics study highlighted the recycling of iron within the cell
between nitrogenase and photosystems on a daily basis [56]. In
ocean ecosystems, Crocosphaera has been included as simple equa-
tions (often represented as unicellular N, fixers) [56,104,106]. One
model illustrated the fitness advantage and extended range
enabled by daily Fe recycling in the oligotrophic Pacific where Fe
is scarce [56].
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There are multiple types of coarse-grained models for Cro-
cosphaera. Some resolve functional molecules without diurnal cel-
lular cycles [153,156]. One model resolves diurnal cycles of cellular
C and N metabolisms, with more coarse molecular representation
[98]. Recently, a model with a diurnal cycle resolving intracellular
0, concentrations and Fe cycles has been developed showing that
0, and the level of respiration are key factors in constraining their
niche in warm waters (>20 °C) [75]. Furthermore, a model resolv-
ing heterogeneous N, fixation among the population showed that
such heterogeneity decreases the cost for O, management and
extends the depth niche of Crocosphaera [191].

FBA has been applied to a similar diazotrophic cyanobacteria
Cyanothece strain ATCC 51142 [197], which is found in coastal
waters [198] and has recently been re-classified as Crocosphaera
subtropica ATCC 51142 [199]. The results show that the light-
harvesting-balance between photosystem I and II impacts the
growth rate and metabolic organization [197].

3.2.3. Richelia

Richelia is an obligate symbiont [200] (Fig. 5), having a similar
appearance as Anabaena with vegetative cells for photosynthesis
and heterocysts for N, fixation [201]. Like Anabaena, Richelia has
heterocysts for N, fixation [31,202-206]. Richelia is associated with
diatoms, providing fixed N to the host diatom [207]; the symbiosis
is generally termed a Diatom-Diazotroph-Association or DDA
[2,31,108]. DDAs have long been recognized [208,209], and
resolved in ecological simulations [104,106,108,190]. Simple equa-
tions have been applied to represent DDAs in ocean models, with
growth limitation by silica (which is used for diatom’s frustules
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Fig. 6. Nitrogen fixers modeled by coarse-grained models and resolved elements. Checkmarks indicate that each element/parameter is simulated. O, indicates intracellular
0, and fixed-N uptake indicates uptake of NH; or NO3. Numbers below the check marks are example references.
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[104,106]) and maximum growth rates higher than other N, fixers
but lower than non-N, fixers [104,106]. Using such a trait-based
approach a recent modeling study argued that seasonal variations
in resource availability would select for faster-growing DDAs in the
summer months in the North Pacific Subtropical Gyre, consistent
with observations [108]. The hypothesized fast high growth rate
of DDAs could be explained by C transfer from the host by a more
recently developed coarse-grained model focusing on C and N
metabolisms, which also suggests C transfer from the host diatom
to Richelia to support the high rate of N, fixation [190].

4. Resolved elements in coarse-grained models

Whereas simple equations and detailed-metabolic models have
common forms [100,104,106,188,190], coarse-grained models are
highly variable due to their flexibility to adapt to different pur-
poses [27,75,83,99,152,153,156,189,190]. One of the key variations
is the number and variety of elements resolved in the models.
Many models resolve C and N fluxes but fewer models consider
P, Fe (Fig. 6) or other elements explicitly. In this section, we review
the variation in coarse-grained models based on an elemental (N, P,
Fe) and molecular perspective (e.g., O, NH; and NO3 (nitrate))
(Fig. 6) since these resources are known to strongly affect the rate
of N, fixation [25,54,162,210-213].

4.1. Cand N fluxes

C and N fluxes are key elements in simulating N, fixers since
these are major cellular elements [155,214,215]. For heterotrophs,
fixed C is acquired from the external environment, whereas for
autotrophs, they can use CO,. C and N are two of the most abun-
dant elements in cells and often growth limiting factors
[161,163,216]. H and O are generally abundant in the environment
(from H,0) unless it is arid. As such, C and N have been the central
currencies for coarse grained models of N, fixers since their incep-
tion [27,53,75,152,153] (Fig. 6).

4.2. P fluxes

P (phosphorus) is essential for cellular growth through its role
in nucleic acids, ATP, phosphorylation of various molecules, and
other purposes [16,17]. The cellular P level is sometimes quantified
in experiments with marine nitrogen fixers [36,215,217-219], but
not as often as C and N, possibly due to the difficulty in measure-
ments. Thus, the data are still limited and accordingly, coarse-
grained models resolving P fluxes are limited (Fig. 6). However, a
chemostat culture study provided cellular P of Crocosphaera
[215], and coarse-grained model resolving P has been developed
accordingly to the data resolving simplified macromolecular allo-
cation [156]. Also, other optimization models for Crocosphaera
[153] and Trichodesmium [99] resolve P fluxes.

4.3. Fe fluxes

Fe is mainly used in photosystems, respiratory complexes, and
nitrogenase [56,220]. Thus, it is essential in cellular growth and
maintenance despite the fact that the cellular quota of Fe is small
relative to C, N and P [221]. Trace metal measurements require par-
ticularly clean laboratory techniques and data on Fe have been rel-
atively scarce. Just a few models have explicitly resolved iron
physiology in nitrogen fixers, including studies of Crocosphaera
[75,153] and Trichodesmium [195] (Fig. 6). Especially, in Cro-
cosphaera, the intracellular Fe cycling is shown to be closely cou-
pled with C and N metabolisms [75]. One optimization model
[153] used data of external Fe concentration for various growth
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data [222], to constrain daily average Fe fluxes. Saito et al. esti-
mated Fe allocation from the protein of Fe contents, showing diur-
nal cycling of Fe between nitrogenase in Crocosphaera [56]. This
was reproduced by a coarse-grained model of this organism which
illustrated its role in organizing the diurnal cycling of cellular
metabolisms [75]. A model of Trichodesmium resolved Fe to study
the response to ocean acidification, predicting that the negative
effect of ocean acidification on N, fixation will be especially severe
in Fe-limited regions [195].

4.4. Fluxes and intracellular concentration of O,

Intracellular O, is a key factor in predicting the rate of N, fixa-
tion since it negatively affects the activity of nitrogenase [54,212].
Despite such importance, the direct measurements of intracellular
0, are not feasible and models provide a way to interpret the rela-
tionship between oxygen and N, fixation. Recent models have
explored the impact of respiration and photosynthesis on O, man-
agement by a variety of N, fixers. This approach was recently intro-
duced in a coarse-grained model of Azotobacter [27,53] (Fig. 6).
Based on the O, fluxes and the assumption of intracellular anoxia,
models predicted the presence of a protective barrier reducing the
diffusivity of oxygen across membranes as well as enhanced respi-
ration to control intracellular oxygen, consistent with laboratory
studies [53]. A similar approach was applied to Trichodesmium
[83] and Crocosphaera [75], suggesting that they also employ a bar-
rier to the invasion of oxygen. These results are supported by the
recent observation that N, fixing marine cyanobacteria encode
for hopanoid lipids, which would reduce the membrane diffusivity
[223]. Notably, the model of Crocosphaera suggests that Cro-
cosphaera may only survive in high temperature regions (>20 °C),
since at lower temperatures respiration rate drops and intracellu-
lar O, increases [75].

4.5. Fixed N uptake and its influence on N fixation

The uptake of fixed N (e.g., NO3 and NH3) has been observed to
down-regulate N, fixation [25,54,162,210-213] (Note that there
are cases that such downregulation does not seem to occur
[78,224-226]). Whereas extensive studies have revealed mecha-
nisms of down-regulation [227], the quantitative models resolving
this effect have been scarce (Fig. 6). A coarse-grained model of Ana-
baena resolved the growth based on various fixed N species and the
process of their assimilation into biomass. The model captured the
observed negative correlation between NO3 and NHZ uptake and
NifH (nitrogenase iron protein) level as well as the inhibition of hete-
rocyst differentiation by fixed N [152]. Recently, a coarse-grained
model of Azotobacter resolved fixed N uptake showing that the rate
of N, fixation is optimally regulated, so that biomass concentration
is maximized [27]. The model suggested that even when entirely
growing on fixed N source, this organism still invested in high rates
of respiration associated with respiratory protection. Fixed N uptake
was included in a coarse-grained model of Crocosphaera based on
chemostat culture data, which shows that N, fixation may increase
their population despite the presence of NH; [156].

5. Remaining challenges

While substantial progress has been made in modeling N, fixers,
models have plenty of room to improve in mechanistic and taxo-
nomic breadth and detail (Fig. 7). For example, though relative
resource supply and demand may be an important factor in deter-
mining the fitness of nitrogen fixers, many coarse-grained models
do not resolve key elements (e.g., P, Fe). There are many open ques-
tions concerning N, fixation and the physiology of N, fixers
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[3,4,9,26,29,31,41,92,228,229] and models have a role to play in
hypothesizing and testing novel and quantitative explanations.
Some important and physiologically interesting N, fixers have not
yet been addressed with quantitative models [26,29]. Here we out-
line some of the outstanding questions and discuss possible future
directions in which modeling contributes to addressing them.

5.1. Trichodesmium paradox

Trichodesmium fixes N, and photosynthesize during the light
period [60,192]. This is paradoxical since Trichodesmium lacks
heterocysts and the nitrogenase is sensitive to the O, produced
by photosynthesis [54,212]. The activity of PSII (where O, is pro-
duced) switches on and off with a time scale of minutes [92,230],
which would lead nitrogenase to be exposed by O, frequently. A
recently developed coarse-grained model resolving average meta-
bolism shows that the residence time of O is in a time scale of sec-
onds [83]; thus metabolic switching from photosynthesis to non-
photosynthesis with high respiration may deplete the intracellular
0, quickly. Further modeling to resolve the dynamic regulation of
photosynthesis on time scales of minutes may reveal the strategies
and associated costs of sustaining N, fixation in the marine
environment.

It has been suggested that the microzone of low O, in a colony
of Trichodesmium plays a role in supporting N, fixation [231]. How-
ever, it has been challenged by recent studies that observe higher
O, in a colony than the environment [232] and higher N, fixation
rates in a free-floating filament than in a colony [84]. Despite that,
there are still cases with lower O, in a colony during the middle of
the day [84,233] and models would be useful in exploring the low
0, effect as well as why free-floating filaments have higher rates of
N, fixation.
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5.2. Modeling more organisms and outstanding questions

5.2.1. Symbiosis

N, fixers are often found in symbiotic relations
[32,165,229,234,235]. Under N limitation, they provide fixed N to
the host supporting their growth. In terrestrial systems, Rhizobium
and Anabaena are well known symbionts with plants [4,5,32,234],
but physiological models of these symbiotic relationships are still
limited. For example, current models focus mostly on the N fixers
and may not provide a larger picture of symbiosis and nutrient
exchanges. How much C should be transferred to the N, fixers
for the optimum growth under different conditions? What con-
strains the rate of N, fixation in symbiosis? Are there ways to
increase symbiotic N, fixation by genetic modification? These are
still open questions, and models of various levels may provide
quantitative predictions and guide empirical studies.

In marine systems, DDA symbioses have long been known
[208,209], but mysteries remain. For example, what molecules do
the partners exchange [31,190]? A recently developed coarse-
grained model predicts C transfer from the host diatom leading
to the hypothesis that some C molecules are pre-processed within
diatoms before transfer to the diazotroph [190]. Simulating N, fix-
ers and hosts together with genome-scale FBA simulations could
yield new insight into the types and rates of exchange that would
optimize biomass production, which may be tested with laboratory
studies [236].

The recently discovered symbiosis between UCYN-A and hapto-
phyte (related to Braarudosphaera bigelowii) [29,228,237,238]
(Fig. 7A) has been receiving increasing attention. Recent studies
show considerable rates of N, fixation and ubiquity of this symbio-
sis in the global ocean [28,239-241], indicating its potential signif-
icance in the global N budget and ecosystems. Despite this, theory
and models specific to UCYN-A have not been developed, which
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could provide testable hypotheses addressing outstanding ques-
tions such as “what molecules are exchanged?”, “how may such
molecular exchange vary under different conditions?”, “how does
the symbiotic relationship give an advantage over non-symbiotic
N, fixers?” and “why are symbiotic relationships specific?”.
Genetic data provide useful qualitative information in modeling
the symbiosis. For example, a genetic study revealed a lack of PSII
and TCA and Calvin cycles in UCYN-A [242], which can be repre-
sented both in coarse-grained models or more detailed metabolic
models.

5.2.2. Marine heterotrophic bacteria

More and more genetic studies show that nifH gene for hetero-
trophic bacteria is ubiquitous [26,243-246]. However, these stud-
ies do not always confirm substantial active N, fixation by these
organisms, but such potential has been suggested [26,247]. What
is the contribution to global fixation, why is this functionality so
universal, and what are the conditions that allow heterotrophic
bacteria to fix N,? Marine organic particles (Fig. 7B) have been
thought to be loci for N, fixation by these organisms
[26,27,248,249]. Particles contain high fixed N, which may sup-
press N, fixation [25,210,211], but would there be a window of
time when fixed nitrogen is depleted and N, fixation occurs? Or
do they fix N, when the ambient concentration of fixed N is high?
Alternatively, respiration in organic particles can provide anoxic
microenvironments that circumvent the O, management problem
that N, fixers face in the surface ocean [250]. These questions may
be quantitatively answered based on a coarse-grained model [27]
combined with a simulation of particle environment [251]. In addi-
tion to the particles, benthic microbial mats may also provide low
0O, environment [252,253], which would also favor N, fixation by
heterotrophic bacteria. Physiological model of N, fixers in the con-
text of molecular diffusion in the benthic mat would be useful in
quantifying the threshold and the rates for this process.

5.2.3. Anaerobic nitrogen-fixing bacteria

Anaerobic bacteria are also of interest for modeling (Fig. 7C),
they mainly exist in sediments or hypersaline environments where
0O, concentration is low [25,41]. In such environments, O, is not a
major problem for anaerobic N, fixers such as Clostridium [41].
How much advantage does the anaerobic environment give to N,
fixers? What controls the rate of N, fixation? What mechanisms
and conditions allow for N, fixation? In sediments, significant
amounts of NH} are detected, but anaerobic N, fixation still seems
to occur [25,41,210,211,254-256]. Models can help to resolve
these questions by quantifying the costs, benefits, and trade-offs
of N, fixation in these environments.

5.3. Application of coarse-grained models in larger scale simulations

In large scale ecological models, simple equations are used to
represent physiologies of N, fixers [101,104,106,107,114,129].
However, as for any model, this approach has some limitations.
First, such models may not consider the intracellular concentration
of O,, which can have a significant impact on N, fixation [54,75].
Second, models generally assume intracellular properties are con-
stant, while in reality they change with the environment (e.g., ele-
mental stoichiometry [85,215,218]). Furthermore, these models
generally do not consider the effect of fixed N in the environment
(e.g., decreased N, fixation due to the presence of NH}). One possi-
ble solution is to include coarse-grained models into larger-scale
models (Fig. 7D). The coarse-grained models lie in a sweet spot
between level of detail and computational efficiency and have
potential to resolve essential cellular properties [150]. Efforts in
this direction have already been started [105], and more modeling
tools have been developed (e.g., Cell Flux Models [27,53,75,83])
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that can be incorporated in the next generation of ecological mod-
els, both for marine and terrestrial systems. Since coarse-grained
models require higher numbers of equations and parameters than
those of simple equations, constraining them will require contin-
ued expansion and curation of accessible laboratory data.

6. Enhancing collaboration between theory and observation

Modeling and experiments are complementary to each other
(Fig. 8). Experiments are essential in discovering new phenomena
and developing conceptual understanding. They provide the quanti-
tative data that is essential for testing theories and constraining
parameterizations. Models are often useful for synthesizing and
organizing understanding, interpreting observed phenomena, as
well as stimulating new hypotheses and testable predictions. An
increasing number of studies combine these two different types of
approaches, but its considerable potential remains only partly real-
ized. In this section, hoping to stimulate more of such collaborations,
we describe two types of model-experiment collaborations (Fig. 8)
and list examples of useful data for developing models (Fig. 9).

6.1. Experiment-model cycles

One type of collaboration is the experiment-model cycle
(Fig. 8A). Experiment provides ingredients for computational mod-
els which produce new, testable hypotheses stimulating further
experimentation. Also, in time, model predictions can be tested by
experimental measurements, which may lead to modification of
modeling. This type of cycle was proposed for Systems Biology dur-
ing the beginning of the 21st century [257,258] and applies to N, fix-
ers as well. For example, based on laboratory data, coarse-grained
models suggested the existence of a strong barrier for O, diffusion
[75,83], which can be experimentally tested by analyzing the prop-
erties of cellular membrane. In fact, the supporting evidence has
been shown recently with genetics study [223]. Based on the
cellular-size information from observation, a coarse-grained model
of DDAs suggested the existence of significant C transfer from the
host diatom to N fixer in DDA [190]. This model-derived hypothesis
may also be tested, for example, with NanoSIMS experiments (a
technique for visualizing spatial patterns of elemental accumula-
tions [28,191,259,260]), which in turn may change model parame-
terization. This cycle leads to the deep, robust, and mechanistic
understanding of the cellular system of N, fixers.

6.2. Experiment-model synthesis

Another type of collaboration is a rather simple one-time com-
bination of experiment and model, which provides theory and
quantitative implications (Fig. 8B). This can be applied when the
model results may not be tested by experiment easily or when
technical barriers preclude experimental tests. For example, a
recent NanoSIMS study showed heterogeneity in multiple types
of unicellular N,-fixing cyanobacteria (some cells fix N, and others
do not), based on which a coarse-grained model was developed,
showing that such heterogeneity reduces C costs and expands
the depth niche on N, fixers in the open ocean [191]. This model
prediction is hard to test in observation or experiments, since we
still do not know how to experimentally modulate the number of
active cells. Based on a batch culture study, another coarse-
grained model was developed showing that respiration rate drops
with temperature, which in turn leads to increase in O, concentra-
tion in the cell, reducing the rate of N, fixation [75]. This hypoth-
esis is rather difficult to test, as intracellular O, may not be
measured with current techniques. In these cases, models are used
to complement experiments, expanding the view/implication
based on quantitative theories.
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6.3. Examples of useful experimental methods

6.3.1. Chemostat culture

Chemostat culture is a widely used method providing essential
data for quantitative models (Fig. 9A). Its strength is based on that
the steady state is created in the culture where the cellular growth
rate is known from the dilution rate (flow rate of the medium)
[157,159,261]. Since the growth rate and steady state condition
are useful factors in constraining all types of models, the data from
chemostat culture have been widely used in modeling studies
[58,157,159,161-163,192,215,262-264] because the steady state
makes for mathematically simple and tractable models. In particu-
lar, many of the coarse-grained models have been developed based
on chemostat data [27,53,98,99,152,153,156]. The method can be
labor intensive [159] and technically challenging, limiting the
number of available data. However, the method has high value
for the development of coarse-grained models.
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6.3.2. Batch culture

In batch cultures a nutrient-rich medium is inoculated with
live cells whose population grows and consumes the resources
[211,217,265-267] (Fig. 9A). Over time, the nutrients are depleted
and population growth slows. The strength of this method is its
simplicity relative to the chemostat culture. The environment
within the culture changes continuously, so time-dependent
models are required to simulate and interpret these experiments.
However, for models built on a dynamical framework that cap-
tures time-dependent biological responses [75,99,152,153], the
batch culture data can be of great use. If acclimation occurs suf-
ficiently rapidly that cellular composition stays close to optimal
over the time-course of the experiment, we might use a quasi-
steady state modeling approach to represent the physiology.
There have been efforts to adapt FBA to dynamic situations
[147,148,268] and this approach has started to be applied to N,
fixers [149].
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A: Examples of useful classic methods

Batch culture

B: Examples of useful parameters

« Cell size

+ 0, level

- CO, level

« Temperature

« Nutrient concentration
« Growth rate

« Cell count
« Cellular elemental stoichiometry (e.g., C:N:P:Fe)
« Chlorophyll

« N, fixation rate

+ Photosynthesis rate
« Macromolecules (e.g. Carbohydrate, Protein, Lipid, DNA, RNA, Polyphosphate).

Chemostat culture
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MA
In-Situ Observation

Genomics Proteomics

Metabolomics NanoSIMS

Fig. 9. A list of biological experiments and data important for modeling N, fixation. (A) Culturing and sampling methods. (B) List of useful parameters from (A). (C) Emerging

technologies that are potentially useful for the models.

6.3.3. Observation (field measurements)

Field observations and in situ measurements (Fig. 9A) are highly
valuable for modeling. However, the environment is highly com-
plex and often challenging to use such data for model parameter-
ization for individual organisms. For example, in the ocean,
microbial populations are very diverse and mixed. However, com-
binations of technologies such as meta-‘omics’, [269-275] flow
cytometry [225,238,276], FISH (Fluorescent In Situ Hybridization)
[28,225,238,277] and NanoSIMS [28,207,225,259,260] allow obser-
vation and parametrization down to the level of individual cells.
Surveys of biogeochemical fluxes including N, fixation can be com-
piled for comparison with larger-scale ocean and terrestrial
ecosystem simulations [101,102,104,106]. Global coverage of rates
of N, fixation is still sparse [88,89,278], but recent technological
development allows high-frequency measurements of N, fixation
[86,279], allowing for rapidly increasing data coverage over time
and space scales of the ocean.
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6.4. Examples of useful parameters

Models can help select and prioritize the key parameters for
which laboratory studies and field observations are most needed
to resolve outstanding questions, as illustrated in Fig. 9B. Cell size
provides hints for diffusivity of O, into the cell [53,66,83,84] as
well as approximates cellular compositions [280-282]. To quantify
0, fluxes and intracellular O,, data on O, concentrations in the cul-
ture/environment are useful [61,84,232]. CO, level is also impor-
tant for photosynthetic organisms as it may affect the rate of
photosynthesis and thus O, evolution [35,283]. Unless testing the
effect of CO, limitation, it is preferred that CO, is pumped in the
culture to avoid the negative effect of CO, limitation on photosyn-
thesis, as such effect would make the model parameterization
complex. Temperature is another important factor as it affects
the molecular diffusion [284,285] and cellular metabolisms [286-
288]. Growth rate is a known parameter for chemostat cultures
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[157,159,261], but it is also important for batch cultures, since
many model outputs are related to growth rates (e.g., N, fixation,
respiration, photosynthesis, elemental stoichiometry
[158,161,215,264,289,290]). Cell concentration is required if it is
necessary to obtain per cell values such as elemental or molecular
mass. Cellular elemental stoichiometry provides the cellular
demand for each nutrient for a specific growth rate [58,215,218].
It is known to vary with growth rate, thus, values for multiple
growth rates are ideal (preferably at least 3 growth rates in case
the relation is non-linear) [158,215,291]. For photosynthetic N, fix-
ers (e.g., Anabaena, Crocosphaera, Trichodesmium), the
photosynthesis-related parameters such as cellular content of
chlorophyll [215,264] and the rate of photosynthesis
[85,192,287] are useful as photosynthesis produces fixed C essen-
tial for cellular growth and metabolisms as well as O,, which is
detrimental to N, fixation. The rate of N, fixation is the essence
of N, fixers and certainly is useful. More recent models include
macromolecular allocations [121,156,191] and related data, such
as the levels of lipid, carbohydrate, chlorophyll, protein and nucleic
acids [123,144,292] are useful in testing the model output from
these types models. Different studies use different units for output
data: some use per chlorophyll [192,219,293,294], other use per C
or N [35,213,262], per cell [58,85,264,295], per cellular volume
[215] or per cell suspension volume (e.g., seawater) [218]. Ideally,
these units are inter-convertible and, for this, the values for chloro-
phyll per cell, C and N per cell, and cellular concentration are valu-
able. Especially, chlorophyll content is highly variable
[158,215,264,296,297] and the data for chlorophyll (per cell or
per C) would be of great use if the data are to be presented per
chlorophyll.

6.5. Emerging experimental methods and data

Technological and experimental advancements provide new
types of data available for model development (Fig. 9C). Proteomics
and genomics indicate the presence of metabolic pathways, which
provide a basis for FBA [100,188]|; FBA predicts a metabolic flux
network (and thus the partition of fluxes at metabolic branch-
points) based on possible sets of reactions informed from these
‘omics studies and the flux optimization for selected purposes
(e.g., maximizing biomass production) [100,137,138,149,188].
The information from genomics can also be useful for coarse-
grained models, since the model can selectively reflect distinct
metabolic patterns [242]. Proteomics can reveal the allocation to
enzymes that mediate key functions such as N, fixation and photo-
synthesis [56], which have been resolved in some models
[75,99,152,153,186]. Also, some coarse-grained models coarsely
resolve protein allocation and could be better constrained with
more proteomics data. In the future, the rapidly advancing capabil-
ity to measure the presence and relative abundance of metabolites,
known as metabolomics [298,299], may complement FBA models,
together leading to quantification of both metabolites and meta-
bolic fluxes.

Sitting in between genomics and proteomics is transcriptomics,
providing the quantitative information for the level of specific
mRNAs [271,274,275]. Since a large part of mRNAs are used for
protein synthesis, transcriptomics provides implication for what
proteins are expressed/used within the cell. This measurement
may not strictly predict the level of proteins, since it does not pro-
vide information for the destruction of proteins (e.g., protein turn-
over [300]). Despite that, this technology has been widely used due
to low cost and low time requirement relative to proteomics.

Furthermore, metabolomics may be used to approximate the
composition of macromolecules, which would be useful in con-
straining coarse-grained models that resolve macromolecular allo-
cations. For example, comprehensive measurements of cellular
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amino acids [301] may be useful in estimating the level of cellular
proteins. Finally, NanoSIMS technology provides useful data in ele-
mental accumulation at (sub)cellular levels [28,191,259,260],
essential in modeling heterogeneous cellular activities [191], pro-
viding another layer of detail in modeling at any scale.

7. Summary and outlook

Overall, each type of model - simple equations, coarse-grained,
and detailed metabolic models - has its own strength and can be
applied to different problems. The coarse-grained type has been
applied to a wide range of applications and provided many new
insights, and still holds potential for further development. Proper
experimental data are essential for any type of modeling, and both
classic parameters and more recent technologies provide useful
information. Experiments and models are complementary and pro-
vide powerful synthesis of quantitative measurements and theory.
This synthetic approach has been rapidly expanding. With such
model-experiment synthesis, models can be expanded to cover dif-
ferent diazotrophic organisms, such as UCYN-A, marine hetero-
trophic N,-fixers, and anaerobic N, fixers. As the emerging class
of coarse-grained models are incorporated into large-scale models,
we expect a rapid development and expansion of predictive skill
and understanding of the interactions between microbial ecosys-
tems, biogeochemistry, and climate.
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