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Cyanophycin is a biopolymer of arginine (Arg) and aspar-
tate, and it is found in various prokaryotes. Two key enzymes 
of cyanophycin metabolism are cyanophycin synthase (CphA), 
producing cyanophycin, and cyanophycinase (CphB), cata-
lyzing the first step of cyanophycin degradation. CphB is a 
well-conserved enzyme found in the majority of cyanobacteria 
and ubiquitous amongst those that are known to perform 

heterotrophy besides their primary photosynthetic lifestyle. 
Unlike in diazotrophs, where CphB is connected to the 
mobilization of fixed nitrogen, the importance of this enzyme 
remains elusive in nondiazotrophs, such as the model cyano-
bacterium Synechocystis sp. PCC 6803. The Synechocystis 
ΔcphB deletion strain does not accumulate cyanophycin and 
shows no photoautotrophic growth defect. However, we show 
here that ΔcphB is not able to proliferate heterotrophically, 
although the CphA-less strain exhibits no obvious defect un-
der heterotrophic conditions. Metabolomics profiling revealed 
that ΔcphB failed to upregulate the biosynthesis of Arg and 
displayed misregulated carbon and nucleoside metabolisms. 
These suggest that CphB is needed for the activation of the 
Arg pathway, which appeared to be crucial for balancing the 
nitrogen and carbon ratio during the acclimation to hetero-
trophy. On the other hand, the interaction of CphB with the 
Arg biosynthetic enzyme, acetylornithine aminotransferase, 
stimulated the hydrolysis of cyanophycin in an in vitro assay. 
These data, together with the metabolic profiles of ΔcphB, 
imply that the catabolism of cyanophycin and the biosynthesis 
of Arg are mutually coregulated metabolic pathways.

Cyanobacteria are highly adaptive microorganisms with 
remarkably flexible metabolism, which accounts for their vast 
abundance in versatile environments on Earth. For instance, 
many cyanobacteria are able to fix atmospheric N 2 , a trait that 
was dynamically gained and lost during their evolution (1). 
Moreover, they possess two distinct photosystems driving the 
extraction of electrons from water with the concomitant

release of oxygen. This is one of the most demanding re-
actions in biology, and it allows cyanobacteria to produce vast 
amounts of ATP and NADPH to support the utilization of 
inorganic carbon (C) sources, such as atmospheric CO 2 . Being 
the only prokaryotes performing oxygenic photosynthesis, 
they have to manage especially diverse anabolic and catabolic 
processes in one compartment, which brings up the need for 
tight control over the different metabolic pathways. At the 
same time, many cyanobacteria are able to acclimate to 
facultative, nonphotosynthetic growth mode and proliferate 
solely on organic C sources (reviewed in Ref. (2)). The het-
erotrophic abilities of cyanobacteria recently gained attention 
in biotechnological applications (3) to optimize the produc-
tion of targeted compounds (4–6). Despite the ecological and 
biotechnological importance of cyanobacteria, the regulation 
of their complex metabolism is poorly understood, even in the 
most widely studied Synechocystis sp. PCC 6803 (hereafter 
Synechocystis) (7). This cyanobacterium was originally iso-
lated as a glucose-sensitive strain; however, several glucose-
tolerant substrains have later become popular laboratory 
models (8).

Synechocystis is a nondiazotrophic, facultative photoauto-
troph (PAT), which, besides its principal, photosynthetic 
lifestyle, is able to grow heterotrophically utilizing organic 
molecules as energy, electron, and C source (2). For its dark, 
heterotrophic growth, Synechocystis needs a daily light pulse, 
which does not activate photosynthesis but has regulatory 
means (9). During this so-called light-activated heterotrophic 
(LAH) growth, Synechocystis efficiently assimilates glucose, 
and even though it grows substantially slower than photo-
autotrophically, the rate of protein synthesis remains com-
parable in LAH- compared with PAT-grown cells (10). On the 
other hand, the relative abundances of various proteins 
change intensively during the transition from PAT to LAH 
(10, 11) to acclimate the entire metabolism for heterotrophy. 
While in PAT, the major glycolytic pathways essentially serve 
as anaplerotic reactions, reinforcing C fixation (12); in LAH, 
the cells rely on external glucose, which is predominantly 
metabolized via the oxidative pentose phosphate (OPP)
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pathway (13–17). However, the light pulse–dependent acti-
vation of fructose-1,6-biphosphate (Fr-1.6-biP) aldolase, 
participating in the Embden–Meyerhof–Parnas (EMP) 
pathway, was also found to be crucial for the LAH glycolytic 
process (10, 18). Since the fundamental changes in C assim-
ilation demand the adjustment of the intracellular C:nitrogen 
(N) ratio, enzymes involved in N metabolism also show 
significantly different cellular levels during LAH growth (11, 
19). In particular, arginine (Arg) biosynthetic enzymes (see 
Fig. 1), such as acetylglutamate (AcGlu) kinase (ArgB), or 
acetylornithine aminotransferase (ArgD), are strongly upre-
gulated in LAH conditions (11). Arg biosynthesis is a central 
target of the PII-regulatory pathways, signifying its impor-
tance in C/N homeostasis in cyanobacteria (reviewed in 
Ref. (20)). In Synechocystis, Arg is markedly channeled to the 
synthesis of a N-rich biopolymer (21), which forms granule 
peptide structures (cyanophycin granule peptide [CGP] (22, 
23)). Similar to the Arg biosynthesis–related enzymes, cya-
nophycin synthase (CphA), which is responsible for the 
biosynthesis of CGP, also accumulates in LAH (11).

CGP is catabolized to β-Asp-Arg dipeptides by cyanophy-
cinase (CphB)—the CGP-specific exopeptidase (24). However,

this enzymatic function appeared to be negligible, and the 
importance of CphB in Synechocystis remains to be elucidated 
(25). In the present study, we identified that CphB is needed 
at the early stages of acclimation to LAH, although cyano-
phycin metabolism had no direct role in this acclimation 
process. In fact, a CphB-dependent upregulation of Arg 
biosynthesis seems to be crucial at the onset of LAH for 
preventing the misregulation of the central C and nucleoside 
metabolisms. We further demonstrated that the interaction of 
ArgD with CphB (26) stimulates the in vitro hydrolysis of 
cyanophycin, suggesting a mutual coregulation of Arg 
biosynthesis and cyanophycin degradation.

Results
The CphB-null mutant of Synechocystis loses its viability 
under LAH

To better understand the physiological function of CphB in 
cyanobacteria, we studied the effect of the elimination of this 
enzyme in the Synechocystis ΔcphB strain. As was shown 
earlier, the lack of CphB did not cause a growth defect in PAT 
((27), Fig. 2). Since Synechocystis is able to proliferate on 
glucose in light (mixotrophic, MT) or in LAH growth con-
ditions (2, 9), we tested whether ΔcphB shows phenotypic 
changes under these alternative, glucose-utilizing trophic 
modes. Remarkably, the ΔcphB cells hardly proliferate on agar 
plates with glucose in the dark (LAH), in contrast to their 
PAT and MT growth, which were comparable with the 
growth of the WT control strain (Fig. 2). The elimination of 
the CphA enzyme, which is responsible for the synthesis of 
CGP, had no effect on the LAH growth of the resulting strain 
(ΔcphA), implying that CGP is not crucial under these con-
ditions (Fig. 2). The ΔcphA strain accumulated WT level of 
CphB (Fig. S1), further supporting that the absence of CphB is 
responsible for the LAH-growth defect. Monitoring WT and 
ΔcphB cells in liquid, batch cultures revealed that the prolif-
eration of ΔcphB slowed down significantly (p < 0.001) from 
the third day of LAH cultivation; therefore, we used 3-day 
cultivated cell cultures for further analysis (Fig. 2B).

Cyanophycin and N metabolism seem to be inter-
connected, particularly in diazotrophic strains (25, 27). Be-
sides, our data indicate that the CphB enzyme is needed for 
the heterotrophic growth mode in Synechocystis (Fig. 2). To 
test a potential relation between the presence of CphB and the 
competence in diazotrophy and/or heterotrophy, we analyzed 
the appearance of these traits in cyanobacteria. The capability 
to fix N 2 was judged by the presence of the nif gene cluster (1). 
Since no particular gene(s) responsible for heterotrophy have 
been recognized so far (2), we narrowed down our analysis to 
species with available information about their trophic levels 
(Table S1).

We found that the majority of cyanobacteria, even those in 
the most basal lineages, harbor CphB (Fig. S2). The evolution 
of the CphB protein in cyanobacteria resembles the evolution 
of conserved housekeeping proteins (28), further supporting 
that CphB is an ancestral enzyme. The CphB-encoding gene 
was lost only in five sublineages in our reconstructed

Figure 1. Simplified scheme of the Arg and CGP biosynthetic pathways 
in cyanobacteria. Glutamate is acetylated by glutamate/ornithine acetyl-
transferase (ArgJ), followed by phosphorylation catalyzed by acetylgluta-
mate kinase (ArgB), and consequently, reduction to a semialdehyde form 
by N-acetyl-gamma-glutamyl-phosphate reductase (ArgC). The first four 
enzymatic steps, which are conserved from bacteria to plants (109), are 
accomplished by acetylornithine aminotransferase (ArgD). ArgJ then 
transfers the acetyl group from acetylornithine back to Glu. L-ornithine is 
converted into L-citrulline by ornithine carbamoyltransferase (ArgF). In the 
final steps of arginine biosynthesis, argininosuccinate synthase (ArgG) and 
lyase (ArgH) synthesize L-argininosuccinate and L-arginine, respectively. In 
cyanobacteria, substantial amounts of arginine can be channeled to the 
synthesis of cyanophycin granule peptide (CGP) (21) catalyzed by cyano-
phycin synthase (CphA). CGP is degraded to asparagine-arginine (β-Asp-
Arg) dipeptide by cyanophycinase (CphB) and further hydrolyzed to 
L-arginine and L-aspartate by an isoaspartyl dipeptidase (CphZ). For more 
details, see Ref. (110).
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phylogeny and was present in 65 of the 82 selected strains 
(Fig. S2). Even though cyanophycin metabolism seems to be 
primarily connected to N 2 fixation (25, 27), CphB is wide-
spread also amongst nondiazotrophic strains (29 strains 
contain cphB in the absence of nif; Fig. 3). Still, the majority of 
the CphB-containing species are able to fix N 2 and/or to 
switch to nonphotosynthetic growth mode (nif and/or facul-
tative: 49 of 65). Amongst those, many contain an additional 
open reading frame encoding a homolog of CphB (CphB-2, 
Fig. S2). The assumed gene duplication event leading to the 
origin of cphB-2 was reconstructed to happen at roughly the 
same point in the evolution of cyanobacteria, at which the 
first strains capable of heterotrophic growth appeared. 
Notably, our analysis did not identify any strain capable of 
heterotrophy that would lack CphB (Fig. 3).

Upregulation of Arg biosynthesis in LAH depends on CphB

The source of the heterotrophic growth defect of ΔcphB 
was analyzed by targeted metabolomics, focusing mainly on 
the central C and N pathways. The correlation between the 
p value and the fold change of the selected metabolites in 
PAT- and LAH-grown ΔcphB compared with WT is shown 
in volcano plots (Fig. 4). Under PAT conditions, two me-
tabolites—NADH and 5-formamidoimidazole-carboxamide 
ribotide (a purine biosynthetic intermediate)—showed 
significantly higher accumulation in ΔcphB (Fig. 4). On the 
other hand, after 3 days of acclimation to LAH, when the 
mutant growth slowed down (Fig. 2), six metabolites showed 
significantly higher intracellular levels in ΔcphB compared

with WT (Fig. 4). Moreover, Arg, and its biosynthetic in-
termediate, argininosuccinate, as well as uracil, were 
downregulated in the mutant (Fig. 4).

In bacteria, Glu is acetylated to AcGlu before entering the 
Arg biosynthetic pathway. We could see a dramatic drop in 
the relative amounts of Glu in LAH relative to PAT in WT but 
not in ΔcphB (Fig. 5). At the same time, the relative amount of 
AcGlu significantly increased in WT but not in ΔcphB (Fig. 5). 
These suggest that while in WT at least a partial amount of 
Glu is directed toward the synthesis of Arg; in ΔcphB, this 
initial step of Arg biosynthesis was less catalyzed. ΔcphB 
further showed a defect in the accumulation of arginino-
succinate, a rate-limiting intermediate of Arg biosynthesis 
that was upregulated in WT after the transition from PAT to 
LAH (Fig. 5). Consequently, unlike in WT, the relative 
amount of Arg did not increase in the mutant in LAH (Fig. 5). 
Since the catalytic activity of CphB enables the release of Arg 
and Asp, the absence of this enzyme could potentially 
decrease Arg levels in the cells. However, Asp accumulated to 
a similarly high extent under LAH in both WT and ΔcphB 
(Fig. 5), further supporting that the relatively lower amount of 
Arg in the LAH-grown ΔcphB was due to a defect specifically 
in the biosynthesis of Arg.

Besides AcGlu kinase and ArgD, enzymes involved in the 
biosynthesis of aromatic amino acids were also upregulated in 
LAH (11). Our metabolomics data confirm the upregulation of 
tyrosine and tryptophan in both strains studied (Table S2). 
Apart from Arg, the most significantly changing amino acid 
was Gly, whose level was downregulated in LAH-grown WT

Figure 2. CphB is required for heterotrophy. A, growth of the indicated strains in light with additional glucose (mixotrophic; MT), as well as under 
photoautotrophic (PAT), and light-activated heterotrophic (LAH) conditions. Batch cultures were exponentially grown under the control, PAT conditions. 
The concentration of cells in the cultures was adjusted, and the indicated number of cells was pipetted on solid media and cultivated further under PAT or 
transferred to MT or LAH conditions. B, changes in cell number in batch cultures of ΔcphB (empty symbol) and WT (solid symbol) grown under PAT or LAH. 
Symbols and error bars represent the average data of three independent experiments and their standard deviation, respectively. After 3 days of culti-
vation, the concentration of cells in the ΔcphB cultures was significantly lower (p < 0.001) compared with WT. This time point was chosen for sampling for 
further analysis (indicated by squared boxes). CphB, cyanophycinase.
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(Fig. 5). Gly is primarily generated from the photorespiratory 
metabolite, 2-phosphoglycolate. Since photorespiration is ex-
pected to be negligible under nonphotosynthetic conditions, 
the significant drop in the Gly levels in LAH is comprehen-
sible. However, in ΔcphB, the level of Gly in LAH did not 
follow the decrease observed in the WT but remained high, 
suggesting an impaired regulation of C metabolism in the 
mutant.

Impaired utilization of carbohydrates in the absence of CphB

It was previously reported that the deletion of CphB did not 
cause the accumulation of CGP in Synechocystis (25). We 
tested this conclusion under our experimental conditions by 
analyzing the cell ultrastructure using a transmission electron 
microscope before and after 3 days of acclimation to LAH. As 
reported before, the absence of CphB has no obvious effect in 
PAT conditions (25), and in LAH, the amount of photosyn-
thetic membranes greatly reduces (19) (Figs. 6 and S3). 
Importantly, we could not observe CGP in any of the strains 
under the tested conditions, whereas the C storage material, 
glycogen, intensely accumulated in the LAH-grown ΔcphB 
(Figs. 6, S3 and S4).

Anoxic pathway of glucose breakdown was unlikely to be 
utilized, since the dissolved oxygen content in the LAH cul-
tures remained relatively high (214 ± 8 μM). Also, the relative 
levels of one of the main products of fermentation, lactate, 
were presented in even lower levels in LAH compared with 
PAT conditions (Table S2). The early metabolites of glucose 
catabolism, such as the phosphate derivatives of glucose and 
fructose, although not significantly, consistently accumulated 
to a higher extent in the LAH-grown ΔcphB compared with 
WT (Fig. S4, Table S2). Both strains, but especially ΔcphB, 
contained relatively high amounts of 6- and 5-C sugar phos-
phates (Table S2, Fig. S4). On the other hand, the conversion 
of 6-C sugars to triose phosphates in the lower glycolytic path 
was apparently less efficient under LAH compared with PAT 
in both strains (Table S2, Fig. S4). Despite its slower growth 
under LAH (Fig. 2), the mutant had relatively higher levels of 
sugar phosphates, confirming that its LAH growth defect is 
not related to the availability of C for biomass production 
(Table S2, Fig. S4).

Disrupted nucleotide homeostasis in the absence of CphB

One of the most upregulated sugar phosphates in LAH was 
ribose-5-phosphate (R-5-P)—the early precursor of purine

Figure 3. Distribution of the cyanophycinase-encoding gene (cphB) 
and the nitrogenase-encoding gene cluster (nif) amongst obligate and 
facultative photoautotrophic cyanobacteria. The Venn diagram was 
generated using a list of strains with known trophic levels (Table S1).

Figure 4. Metabolic profiles of the ΔcphB and the WT control strains differ especially under LAH growth. The selected metabolites used for the 
volcano plots were identified by LC–High Resolution (HR)MS and are listed in Table S2. Each data point was determined from the measurements of n = 3 
samples derived from biologically independent experiments. The Welch’s t test was used to test the null hypothesis. The significantly (p < 0.05) upre-
gulated and downregulated (−1 > log 2 [fold change] >1) metabolites are indicated with labeled red and blue symbols, respectively. AICAR, 5-amino-4-
imidazolecarboxamide; DOA, 2 ′ - and 5 ′ -deoxyadenosine; FAICAR, phosphoribosyl formamidocarboxamide; Fr-1,6-biP, fructose-1,6-biphosphate; PAT, 
photoautotrophic; LAH, light-activated heterotrophic; SAICAR, 1-(5 ′ -phosphoribosyl)-5-amino-4-(succinocarboxamide)-imidazole.
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nucleotides. Its level increased in both strains but more 
dramatically in ΔcphB than in WT (Fig. S4). The high level of 
R-5-P was accompanied with higher levels of the biosynthetic 
intermediates of purines (such as 5-amino-4-imidazolecarbox 
amide, 1-(5 ′ -phosphoribosyl)-5-amino-4-(succinocarboxamid 
e)-imidazole, or 5-formamidoimidazole-carboxamide ribo-
tide) in both strains grown under LAH conditions (Fig. 7, 
Table S2) but again, with a more significant increase in ΔcphB 
(Figs. 4 and 7, Table S2).

Unlike purines, dihydro-orotate and uracil, which are spe-
cific metabolites for the biosynthesis of pyrimidines, showed 
lower relative levels in ΔcphB (Figs. 4 and 7, Table S2). 
Consequently, the mutant contained less uridine triphos-
phate, the final product used for RNA synthesis (Fig. 7, 
Table S2). Moreover, although it accumulated more purine 
biosynthetic intermediates, the mutant failed to significantly 
upregulate the amount of the guanosine-triphosphate product 
(Table S2). The substantially lower ratios of nucleoside tri-
phosphates/monophosphates in the LAH-grown mutant 
strongly suggest an impaired accumulation of nucleotides 
used for the biosynthesis of RNA (Fig. S5A). The unbalanced 
accumulation of purine and pyrimidine metabolites in ΔcphB 
was accompanied by a significant increase in the purine-

degradation product, xanthine (Fig. 7). Notably, one of the 
most significantly upregulated metabolites in the LAH-grown 
ΔcphB was 2 ′ - and 5 ′ -deoxyadenosines (Figs. 4 and 7, 
Table S2).

The ArgD enzyme enhances the activity of CphB in vitro

LAH-induced expression of Arg-biosynthetic enzymes was 
previously reported (11). We confirmed the increased level of 
ArgD in LAH, which was slightly, but not significantly 
(p = 0.165), less intense in ΔcphB (Figs. 8A and S6). As re-
ported recently, the Synechocystis CphB binds to ArgD in vivo 
(26). To monitor the presence of ArgD–CphB complex during 
heterotrophy, we utilized a strain containing a FLAG-tagged 
variant of ArgD (f.ArgD) for pull-down assay; please note 
that the addition of an FLAG tag to ArgD had no observable 
effect under the tested conditions (Fig. 2). Although the 
accumulation of the f.ArgD–CphB complex can be induced 
by feeding with ornithine (28), f.ArgD copurified with CphB 
in a comparable ratio in PAT- and LAH-grown cells, sug-
gesting that the formation of the complex is not affected by 
LAH conditions (Fig. 8B).

Figure 5. Arg biosynthesis is upregulated in a CphB-dependent manner in LAH. The relative amounts of glutamate, acetylglutamate, arginino-
succinate, arginine (Arg), asparagine (Asp), and glycine (Gly) were determined by LC–High Resolution (HR)MS in samples prepared from equal amounts of 
WT control and cyanophycinase-less (ΔcphB) cells that were cultivated under photoautotrophic (PAT) or light-activated heterotrophic (LAH) conditions. 
The violin plots were generated from the data of three independent experiments, represented by circles. The median and the quartiles are indicated with 
solid and dashed lines, respectively. The Welch’s t test was used to test the null hypothesis with a significance level set to p < 0.05. The significant 
differences are marked with *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 6. Aberrant accumulation of carbon storage in the LAH-grown ΔcphB cells. Electron micrographs were prepared of the WT and ΔcphB cells of 
Synechocystis grown for 3 days under PAT or LAH conditions. Similar images prepared from biologically independent cultures are shown in Fig. S3. The 
photosynthetic membrane lamellae are indicated by arrows; carboxysome (C), polyhydroxybutyrate (PHB), and glycogen (G) were identified according to 
the description of these inclusion bodies reviewed in Ref. (111). For images of excess glycogen accumulation in Synechocystis, see also Ref. (112). CphB, 
cyanophycinase; LAH, light-activated heterotrophic; PAT, photoautotroph.

Figure 7. Accumulation of nucleoside metabolites altered during the acclimation to LAH and in the absence of CphB. For details, see Figure 5. 
AICAR, 5-amino-4-imidazolecarboxamide.

The role of cyanophycinase in heterotrophy
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In order to provide structural insight into the ArgD–CphB 
complex, we calculated an AlphaFold 3 prediction (29). Both 
ArgD and CphB are known to form homodimers (30, 31), so

we focused on a hypothetical, tetrameric organization 
(ArgD 2 –CphB 2 ). The calculated structure had very high 
confidence scores for almost all residues (predicted local

Figure 8. ArgD binds CphB in both LAH and PAT conditions. A, the relative levels of ArgD and CphB under PAT and LAH in WT and ΔcphB were 
determined by immunodetection. Whole-cell lysates were separated on SDS-PAGE and blotted onto a PVDF membrane, and the ArgD and CphB proteins 
were detected using specific antibodies. The Ponceau staining of the membrane is shown for the loading control. Repetitions of the experiment and their 
statistical analysis are presented in Fig. S6. B, coimmunopurification of f.ArgD with CphB was performed using the same amounts of PAT- or LAH-grown f. 
argD/ΔargD cells. The eluates were separated by SDS-PAGE together with the input lysates, including 50% of the lysate from the PAT-grown cells (PAT 50 ). 
The SYPRO-stained gel was subsequently blotted to a PVDF membrane, which was probed with specific antibodies against CphB and the FLAG tag of 
ArgD. The control f.ArgD pull-down prepared from the ΔcphB cells is shown in Ref. (26). CphB, cyanophycinase; f.ArgD, FLAG-tagged variant of ArgD; LAH, 
light-activated heterotrophic; PAT, photoautotroph; PVDF, polyvinylidene fluoride.

Figure 9. ArgD binds CphB and stimulates its enzymatic activity in an in vitro assay. A, structural model of the ArgD 2 –CphB 2 complex predicted by 
AlphaFold 3 (29) and colored according to the predicted local distance difference test (plDDT) score. An additional four models are shown in Fig. S7. 
B, representation of the individual polypeptides in the complex. The plDDT score for the contacts (up to a distance of 5 Å) between CphB and ArgD is 
shown within the blue frame. C, a detailed view of the interface between the CphB and ArgD proteins. The binding residues of CphB and ArgD are labeled 
in magenta and gray, respectively. The CphB residues participating in the β-(Asp-Arg) 2 substrate binding are colored in dark magenta (30). Hydrogen 
bonds are highlighted as yellow dashed lines. All images were prepared in ChimeraX (61). D, in vitro activity of recombinant CphB (Fig. S9A) without or with 
ArgD in the reaction was assessed from its ability to degrade cyanophycin. The reaction was stopped at 120 s (Fig. S9B), and the generated β-Asp-Arg 
dipeptide was determined by ultra-high performance (UHP)LC–HRMS using a chemical standard. E, the in vitro activity of ArgD with or without CphB was 
determined in a coupled enzymatic reaction as described in Ref. (60). The generated NADPH fluorescence was measured and transformed into micromolar 
NADPH concentration using an NADPH standard curve (Fig. S9C). In D and E, the symbols, columns, and error bars represent the measurement of in-
dividual assays, their averaged data and standard deviation, respectively. For both assays, a control containing BSA instead of the respective interactive 
partner is shown. ****p < 0.00001; *p = 0.017 as determined by two-tailed Student’s t test. ArgD, acetylornithine aminotransferase; CphB, cyanophycinase.
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distance difference test = 90–100), including the contact be-
tween ArgD and CphB (Fig. 9, A, B and S7). The Glu207 
residue of ArgD forms hydrogen bonds with His174 and 
Arg178 of CphB (Fig. 9), which are also needed for the 
binding of the β-(Asp-Arg) 2 substrate of CphB (30). We 
further checked how conserved the CphB (Ser46-Arg55) 
motif predicted to stabilize the CphB–ArgD assembly is. The 
analysis of CphB proteins from 1000 cyanobacterial strains 
revealed that those residues, which form a network of 
hydrogen bonds with ArgD (Ser46, Arg47, Glu48, and R55), 
are almost absolutely conserved (Fig. S8A). In contrast, the 
CphB enzymes from various bacterial strains lack such a motif 
(Fig. S8B).

Since the interaction of ArgD with the catalytic site of 
CphB is supported by high confidence in the AlphaFold 3 
prediction, we assessed the activity of CphB in the absence or 
presence of ArgD, using recombinant proteins (Fig. S9A). 
Since the reaction was saturating in 4 min, we have chosen 
the 2 min time point for statistical analysis and quantified the 
concentration of the β-Asp-Arg dipeptide in the assay by LC– 
high-resolution mass spectrometry (HRMS) (Fig. S9B). 
Notably, the activity of CphB almost doubled if ArgD was 
added to the assay in a 1:1 M ratio (Fig. 9D). On the other 
hand, only 4% to 10% higher ArgD activity was measured 
when CphB was included in the reaction (Fig. 9E). These 
results indicate that the formation of the ArgD–CphB com-
plex particularly enhances the catalytic rate of CphB.

Discussion
Regulation of Arg biosynthesis for heterotrophy

With CphA being amongst the most induced enzymes, 
cyanophycin metabolism is expected to be upregulated during 
LAH growth (11). Indeed, longer periods (2 w) of LAH 
cultivation on higher glucose supplements (60 mM) resulted 
in the accumulation of CGP (19). On the other hand, our data 
demonstrated that LAH growth was unaffected in ΔcphA 
(Fig. 2), which is unable to synthesize CGP (32) and has WT 
levels of CphB (Fig. S1). Moreover, we did not observe CGP 
accumulation in the LAH-cultivated ΔcphB mutant (Fig. 6). 
These imply that it is not the synthesis/turnover of CGP but 
the presence of CphB that is particularly crucial for 
heterotrophy.

The Arg biosynthetic enzymes show elevated expressions 
under LAH conditions (11), and the upregulated biosynthesis 
of Arg was pronounced in the LAH-grown WT, whereas it 
was absent in the ΔcphB mutant (Fig. 5). However, the in vitro 
activity of ArgD was only slightly affected by CphB (Fig. 9E), 
which can have very small, if any, biological significance. 
These signalize that if CphB controlled the Arg pathway via 
the complex with ArgD, additional factors are likely involved 
in the regulation. Alternatively, CphB targets different, yet 
unidentified, enzymatic step(s) in the pathway. As our at-
tempts to tag CphB have failed, this scenario cannot be 
excluded. On the other hand, ArgD stimulated the CphB-
catalyzed degradation of cyanophycin by twofold (Fig. 9D). 
This observation, together with the metabolic profile of the

ΔcphB mutant, implies that the biosynthesis of Arg and the 
catabolism of cyanophycin are mutually coregulated. Since 
both these pathways lead to the accumulation of Arg, their 
coordination is compelling. While both CphB and ArgD are 
conserved enzymes amongst prokaryotes, the CphB segment 
predicted to bind ArgD is conserved in cyanobacteria but not 
in their bacterial counterparts (Fig. S8). These suggest that the 
interaction of ArgD with CphB, and potentially, the cor-
egulation of CGP catabolism and Arg biosynthesis, is unique 
in cyanobacteria.

Although the mechanism remains to be elucidated, the 
CphB-dependent upregulation of Arg biosynthesis was crucial 
for heterotrophy in Synechocystis. It has been previously 
recognized that Arg biosynthesis can be controlled at the level 
of various enzymes, such as ArgB, ArgD, and ArgG, signifying 
the importance of tight regulation over the pathway (33–35). 
Nevertheless, why Synechocystis needs to upregulate Arg 
metabolism during heterotrophy is unclear. A likely expla-
nation after all stands for the previously suggested function of 
Arg metabolism in balancing C:N ratio, which has to be 
steadily controlled especially in phototrophs (discussed in 
Ref. (20)). The metabolism of LAH cells is entirely dependent 
on the organic C source in the growth medium (9), and 
although glucose is efficiently taken up by Synechocystis, it is 
mainly metabolized to C-5 rather than C-3 sugar phosphates 
((15, 16), Table S2, Fig. S4). Consequently, relatively little 
glyceraldehyde-3-phosphate and 3-phosphoglyceric acid are 
available for biomass production in LAH (Fig. 10). Since 
Synechocystis maintains a high 5:1 ratio of C:N (20, 36), the 
limitation in C-3 sugar phosphates can potentially bring up 
the need to concomitantly decrease the amount of N available 
for protein synthesis. This can be efficiently carried out by the 
acetylation of Glu, which is then exclusively directed toward 
Arg biosynthesis.

Metabolic deficiency of ΔcphB in heterotrophy

Synechocystis assimilates glucose in the form of glucose-6-
phosphate (15), which accumulated to comparable levels in 
the WT and ΔcphB strains, indicating functional C uptake in 
both strains (Fig. S4). Glucose-6-phosphate is then predomi-
nantly metabolized via the EMP and OPP pathways that 
generate NADH and NADPH reductants, respectively 
(13–16). The relatively higher amounts of NADH in the 
absence of CphB imply a more intense contribution of the 
EMP pathway to the breakdown of glucose (Table S2). A 
dominant role for the EMP pathway in ΔcphB is further 
suggested by the accumulation of Fr-1.6-biP, which is the 
most significantly upregulated sugar metabolite in the mutant 
(Fig. 4, Table S2, Fig. 10). These data further support that the 
activation of Fr-1.6-biP aldolase can represent a metabolic 
bottleneck during the acclimation to LAH (10, 18).

Concerning C metabolism, the most fundamental differ-
ence between the LAH-grown WT and ΔcphB cells was their 
glycogen content (Figs. 6, S3 and S4). It was previously re-
ported that instead of CGP, glycogen was building up when 
CGP production was induced by chloramphenicol in a CphB-
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less Synechocystis strain (25). Similarly, we observed an 
aberrant accumulation of glycogen in the LAH-grown ΔcphB 
(Figs. 6, S3 and S4). Since the biosynthesis of Arg is coregu-
lated with the mobilization of C storage (35), it is plausible 
that the impaired Arg biosynthesis in ΔcphB had a negative 
effect on the degradation of glycogen.

A likely explanation for the preference of OPP in LAH 
(13–16) is to supply R-5-P, the sugar phosphate precursor for 
the purine and pyrimidine metabolites, which accumulate 
after the transfer to LAH. When the PAT cells face the altered 
trophic condition, they reshape their proteome to be able to 
rewire their entire metabolism to a different nutrient-
acquisition mode (10, 11). Therefore, the acclimation pro-
cess is expected to be strongly promoted by the transcrip-
tional and translational machineries that are likely in need of a 
dynamic nucleotide metabolism, which is often key for the 
acclimation to growth challenges (37, 38). This could explain 
the excessive accumulation of metabolites in the pyrimidine, 
purine biosynthetic and salvage pathways, which showed 
some specific differences in ΔcphB (Fig. 7, Table S2). Most 
importantly, pyrimidines and their precursors (such as 
dihydro-orotate and uracil) were relatively less in ΔcphB 
(Fig. 7 and Table S2, Fig. 10). Moreover, uridine triphosphate, 
which is the final pyrimidine product specifically used for 
RNA synthesis, showed significantly lower levels. The

pyrimidine and Arg biosynthetic pathways share their early 
carbamoyl phosphate precursors (Fig. 10), which synthesis has 
a high energy demand and is expected to be a crucial rate-
limiting step of both pathways. We speculate that sharing a 
critical substrate brings up the need for coregulation of these 
biosynthetic routes, and a defect in the biosynthesis of Arg 
would affect the pyrimidine pathway. This is supported by the 
complex regulation of carbamoyl phosphate synthase by 
ornithine, uridine monophosphate, Arg, and pyrimidines (39– 
41).

Adversely to pyrimidines, the purine biosynthetic in-
termediates were relatively more abundant in the absence of 
CphB (Figs. 4 and 7, Table S2). However, despite the vast 
availability of the purine biosynthetic intermediates, the 
nucleotide triphosphate products for the synthesis of RNAs 
and DNA became limited in ΔcphB, especially when 
compared with the amount of their corresponding nucleoside 
monophosphate precursors (Fig. S5A). Consequently, the 
mutant failed to accomplish the nucleotide-demanding 
acclimation process and directed the excess amount of pu-
rine metabolites toward the degradation pathway (Figs. 7 and 
10).

Deoxyadenosines were identified amongst the most signif-
icantly upregulated metabolites in the LAH-grown ΔcphB 
(Figs. 4 and 7). 2 ′ - and 5 ′ -Deoxyadenosines cannot be

Figure 10. A simplified scheme summarizing the LAH central metabolism of the ΔcphB cells compared with the WT control. The metabolites 
indicated in blue, red, or black were showing significant decrease, increase, or no significant changes in ΔcphB compared with WT, respectively. The 
mutant lacking CphB channels much less Glu via AcGlu into Arg biosynthesis. We hypothesize that this regulatory defect causes further metabolic im-
pairments, such as a hindered biosynthesis of pyrimidines and immense accumulation of the purine intermediates. The excess of purines is degraded as 
indicated by the accumulation of xanthine. Another prominent difference is in carbon metabolism, particularly the abnormal accumulation of the carbon 
storage material, glycogen, in the absence of CphB. In addition, the relatively high levels of toxic metabolites, such as 2 ′ - and 5 ′ -deoxyadenosine (DOA) 
and S-adenosyl-homocysteine (SAH), which inhibit the radical SAM enzymes (rSAMe), can have various detrimental effects on the metabolism of ΔcphB. 
See the main text for more abbreviations and the discussion for more details. DHAP, dihydroxyacetone phosphate; F-6-P, fructose-6-phosphate; G-1-P, 
glucose-1-phosphate; G-6-P, glucose-6-phosphate; LAH, light-activated heterotrophic; PEP, phosphoenolpyruvate; SA, semialdehyde.
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distinguished in our measurement, and the accumulation of 
both is plausible. 2 ′ -Deoxyadenosine is a key purine metab-
olite and a critical component of DNA. The impaired nucle-
otide metabolism and proliferation of the mutant could 
potentially lead to DNA degradation and consequent accu-
mulation of 2 ′ -deoxyadenosine. While 5 ′ -deoxyadenosine, 
along with S-adenosyl-homocysteine (Table S2), is a byprod-
uct of the radical S-adenosyl methionine enzymes (reviewed 
in Ref. (42)). Nevertheless, deoxyadenosines, along with 
S-adenosyl-homocysteine, are metabolically toxic; their 
abnormal accumulation can obstruct fundamental cellular 
processes (42, 43). Overall, deletion of CphB led to severe 
metabolic deficiencies that likely increased oxidative stress 
(Fig. S5B) and eventually caused growth inhibition under 
LAH conditions.

All the strains capable of heterotrophy contain CphB, 
suggesting a general importance of this enzyme in the 
acclimation to an alternative, nonphotosynthetic growth 
mode (Fig. 3). However, our analysis was incomplete because 
of the limited information available about the trophic levels 
of cyanobacteria, which is related to the gap in our knowl-
edge about the genes responsible for heterotrophy. Despite 
their evident importance, the metabolic processes driving 
the acclimation of a photosynthetic organism to heterotro-
phy are mainly unknown (2, 44). The present study signifies 
the complexity of the metabolic rearrangements that facul-
tative cyanobacteria are capable of and urges more studies in 
this direction.

Experimental procedures
Construction and cultivation of Synechocystis strains

The glucose-tolerant Synechocystis substrain GT-P (45) 
was used as the WT control and as a genetic background for 
the preparation of mutants. The ΔcphB, f.argD/ΔargD, and 
the ΔcphA strains are described in Refs. (26) and (32), 
respectively. If not indicated otherwise, PAT cultures were 
grown in liquid BG-11 medium on a home-built rotary 
shaker at 28 ◦ C, under continuous, moderate irradiance of 
40 μmol photons m −2 s −1 given by white fluorescence tubes. 
For the transition to LAH, 3-day-old PAT cultures were 
washed to fresh BG-11 medium supplemented with 5 mM 
glucose to achieve a 4 × 10 7 cells/ml density. The LAH 
cultures were agitated with 100 rpm on an orbital shaker 
(ELMI, catalog no.: S-3.02 20L) in darkness, combined with
5 min/24 h illumination with 40 μmol photons m −2 s −1 . The 
dissolved oxygen content of the culturing media was deter-
mined by an immersible oxygen sensor (Presense, Fibox 4). 
The plate-drop experiments were performed by pipetting 
liquid cultures containing known concentrations of cells on 
BG-11 agar plates. The plates were color-scanned after 
cultivation under the indicated conditions. The stable pH of 
the solid media was ensured by 10 mM N-[Tris(hydrox-
ymethyl)methyl]-2-aminoethanesulfonic acid. The number 
and average size of cells were assessed by Coulter counter 
(Multisizer 4; Beckman Coulter).

Isolation and analysis of proteins and protein complexes

Synechocystis cells were mechanically broken as described 
in Ref. (26). Proteins in the whole-cell lysates were solubilized 
with β-dodecyl-n-maltoside. The insolubilized proteins were 
removed by centrifugation, whereas the solubilized proteins 
in the supernatant were loaded onto SDS-PAGE. The proteins 
were separated, visualized with SYPRO orange protein dye 
(Lumiprobe ProteOrange, catalog no.: 40210) and transferred 
onto a polyvinylidene fluoride membrane (Sigma–Aldrich, 
Immobilon-P, catalog no.: IPVH00010) that was subsequently 
incubated with primary anti-CphB and anti-ArgD antibodies 
(26). The primary antibodies were probed with anti-rabbit 
IgG–peroxidase antibody produced in goat (Sigma–Aldrich, 
catalog no.: A6154, Research Resource Identifier [RRID]: 
AB_11125345) and visualized using Immobilon Crescendo 
Western horseradish peroxidase substrate (Millipore, catalog 
no.: WBLUR0500, RRID: AB_439687) and luminescence im-
age analyzer (Fuji, LAS-4000). The specificity of the primary 
antibodies was validated using strains containing the deletion 
and/or protein-tagged forms of the corresponding proteins 
(26). For assessing the apparent sizes of the proteins in the 
SDS-PAGE, a broad range, unstained protein ladder (Thermo 
Fisher Scientific, catalog no.: 26630) was used.

For the coimmunopurification assay, 2 l (10 8 cells/ml) of 
f.argD/ΔargD cells (26) grown in PAT and LAH conditions 
were collected and mechanically broken. Soluble proteins 
were isolated by centrifugation and used for FLAG-affinity 
coimmunopurification assay (46). The protein coeluates 
were analyzed by immunodetection as described previously. 
f.ArgD was detected using anti-FLAG antibody (Sigma– 
Aldrich, catalog no.: F7425, RRID: AB_439687). The relative 
amounts of proteins in the lysates and coeluates were assessed 
from the intensity of the antibody signals using the ImageJ 
software (47). The band intensities were normalized to the 
corresponding loading control, such as SYPRO stain (Figs. 8C, 
S2 and S6) or Ponceau stain (Fig. 8), and the band intensity 
from the PAT-grown control WT was taken as one. The 
significance of the differences in the relative band intensities 
was assessed by a two-tailed Student’s t test.

Quantification of selected metabolites by LC–HRMS

Equal amounts of Synechocystis cells were pelleted from 
each examined culture and immediately frozen in liquid N 2 . 
Metabolites were extracted from the pellets by the addition of 
100 μl of MeOH:acetonitrile (ACN):H 2 O (2:2:1 v/v/v) con-
taining 4-fluorophenylalanine (1 nM/sample). The mixture 
was vortexed for 1 min, shock-frozen in liquid N 2 , and sub-
sequently thawed in a thermoblock for 5 min at 30 ◦ C. The 
sample was homogenized in an ultrasonic bath for 5 min at
0 ◦ C, thoroughly mixed, and sonicated again under the same 
conditions. The mixture was centrifuged at 7000 rpm for 
10 min at 4 ◦ C, and the supernatant was collected. The ho-
mogenization (extraction) was repeated using 50 μl of MeOH: 
ACN:H 2 O (2:2:1 v/v/v). The gained supernatant was filtered 
through a 0.2 μm polyvinylidene fluoride minispin filter 
(HPST) at 8000 rpm for 10 min at 5 ◦ C and was directly
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analyzed by LC–HRMS. An Orbitrap Q Exactive Plus mass 
spectrometer coupled to a Dionex Ultimate 3000 LC system 
(both from Thermo Fisher Scientific) was used for metabolite 
profiling, based on a previously published method (48). 
Chromatographic separation was performed using a SeQuant 
ZIC-pHILIC column (150 mm × 4.6 mm i.d., 5 μm; Merck 
KGaA) maintained at 35 ◦ C. The mobile phase consisted of 
ACN and 20 mM aqueous ammonium carbonate with 
NH 4 OH to reach a pH of 9.2 (B). The flow rate was 450 μl/ 
min, and the gradient program was as follows: 0 min, 20% B; 
20 min, 80% B; 20.1 min, 95% B; 23.3 min, 95% B; 23.4 min, 
20% B; and 30 min, 20% B. The injection volume was 5 μl. The 
mass spectrometer operated in full scan mode with a mass 
range of 70 to 1000 Da, a resolution of 70,000, and electro-
spray ionization in both positive and negative modes. Data 
were processed using Xcalibur software (version 4.0; Thermo 
Fisher Scientific) and an in-house developed Metabolite 
Mapper platform (see Table S3 for details).

The glycogen content of the cells was determined as 
described (49) with modifications established (50). Two mil-
liliters of the samples were collected, spun down, and washed 
with distilled water. Cells were lysed by incubation in 400 μl 
of 30% KOH at 95 ◦ C for 2 h. Glycogen was precipitated by 
the addition of 1 ml cold ethanol to a final concentration of 
70% followed by an overnight incubation at −20 ◦ C. The 
precipitated glycogen was pelleted by centrifugation at 
15,000g for 10 min and washed with 70% ethanol and 98% 
absolute ethanol, consecutively. The precipitated glycogen 
was dried, then dissolved in 200 μl 100 mM sodium acetate 
(pH 4.5) containing 10 mg/ml (7 units) amyloglucosidase 
(10115; Sigma–Aldrich). The glycogen was digested at 60 ◦ C 
for 2 h. The samples were subsequently mixed with 1 ml of 6% 
O-toluidine in acetic acid and incubated at 100 ◦ C for 10 min. 
The absorbance was measured at 635 nm. A calibration curve 
prepared using different concentrations of glucose dissolved 
in sodium acetate was used to determine the amount of 
glycogen in the sample.

For the quantification of the selected metabolites, the 
average, median, and the standard deviation for each data 
point were determined from the measurements of n = 3 
samples derived from biologically independent experiments. 
The Welch’s t test was used to test the null hypothesis with a 
significance level set to p < 0.05. Statistical outliers were 
visually tested after plotting the dataset.

Transmission electron microscopy

The ultrastructure of WT and ΔcphB cells grown for 3 days in 
PAT and LAH batch cultures was determined by transmission 
electron microscopy, which was performed as described in (51).

Phylogenetic analysis

To assess the phylogenetic distribution of CphB, the nif gene 
cluster, and the ability to grow heterotrophically in cyanobac-
teria, a standardized phylogenomic species tree was constructed, 
utilizing the de novo workflow based on 120 concatenated 
conserved bacterial markers preselected in the Genome

Taxonomy Database toolkit (52, 53). The Genome Taxonomy 
Database toolkit v2.3.0 release from May 2023 was used to 
produce a concatenated alignment (81 rows and 5035 amino acid 
positions in total) inferred from the set of cyanobacterial whole 
genomes of strains with known capability of photoautotrophic/ 
heterotrophic growth (Table S1). The resulting alignment was 
utilized for phylogenetic inference using the maximum likeli-
hood method under the GTR + I + G substitution model with 
1000 ultrafast bootstrap replicates performed by IQTREE, v. 
2.0.3 (54). The presence/absence of CphB and nif homologs in 
the target genomes was assessed using custom BLASTp searches 
against each genome using slr2001 (CphB from Synechocystis) 
and several Nif proteins from Nostoc sp. PCC 7107 and Pseu-
danabaena sp. PCC 6802 as queries. The identity of the har-
vested BLAST hits was further verified by protein alignment in 
Geneious Prime 2020.0.3 software (www.geneious.com) and 
conserved domain analysis (55).

Preparation of recombinant proteins

C-terminal His6-tagged CphB (slr2001; CphB-His), ArgD 
(slr1022; ArgD-His), and N-terminal Strep-tagged NADP-
specific glutamate dehydrogenase (slr0710; STREPII-GdhA) 
proteins were overexpressed in Escherichia coli BL21 (DE3) 
using a pET21a plasmid (Fisher Scientific, catalog no.: 69-
770-3) and the pET28a-RS plasmid derived from the pET28a 
according to Ref. (56), respectively. The expression was 
induced with 0.4 mM isopropyl-β-D-thiogalactopyranoside 
(Sigma–Aldrich, catalog no.: I5502) in exponentially grown 
cultures that were shaken for an additional 20 h at 18 ◦ C. 
Cells were harvested by centrifugation (10 min, 4 ◦ C, 
10,000g) and resuspended in lysis buffer (20 mM Hepes [pH 
8.0], 500 mM NaCl, 2 U/μl of benzonase nuclease [Millipore, 
catalog no.: 70664]) and protease inhibitor (SIGMAFAST 
Protease Inhibitor Cocktail Tablet, EDTA-Free, catalog no.: 
S8830). Cells were lysed mechanically on ice (seven cycles of 
30 s sonication at 50% amplitude and 1 min off pulse). The 
lysate was clarified by centrifugation (4 ◦ C, 1 h, 40,000g) and 
by filtration through a 0.22 μm PES membrane (Millipore, 
catalog no.: 99722). The clarified lysate containing CphB-His 
or ArgD-His was loaded into a Protino Ni–NTA 5 ml FPLC 
column (Macherey–Nagel Bioanalysis, catalog no.: 745415-
5) using a Knauer FPLC system. Following sample loading, 
the column was washed with a buffer containing 20 mM 
Hepes, 500 mM NaCl, and 50 mM imidazole. CphB-His or 
ArgD-His was eluted from the column using elution buffer 
(20 mM Hepes, 500 mM NaCl, and 300 mM imidazole). For 
storage and further use, the eluted proteins were desalted 
using a HiTrap desalting 5 ml column (Cytiva, catalog no.: 
17-1408-01) and stored in protein storage buffer (20 mM 
Hepes [pH 7.5], 150 mM NaCl, and 5% glycerol). For 
STREPII-GdhA purification, a Strep-Tactin XT 4Flow 1 ml 
FPLC column (IBA Lifesciences, catalog no.: 2-5023-001) 
was used, and the protein was eluted from the column using 
a buffer containing 20 mM Hepes (pH 8.0), 500 mM NaCl, 
5% glycerol, and 50 mM biotin (IBA Lifesciences, catalog no.: 
2-1016-005). Finally, proteins‘ purity was confirmed by SDS-
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PAGE on a 4% to 15% precast gel (Bio-Rad, catalog no.: 
4561094) (Fig. S9A).

Enzymatic assays

For the CphB activity assay, cyanophycin, purified from 
Synechocystis (57), was dissolved in 0.1 M HCl to reach a
1 mg/ml stock, which was used as a substrate for CphB in a 
130 μg/ml final concentration. Degradation of cyanophycin 
by 2 μM CphB was carried out in the presence or absence of
2 μM ArgD, in 100 mM ammonium bicarbonate buffer (pH: 
7.9) at 18 ◦ C. The reaction was stopped by heat inactivation 
at 70 ◦ C for 15 min (58). Thirty microliters of reaction 
mixture was diluted into 100 μl LC–MS grade water (Merck, 
catalog no.: 1.15333) and filtered on a 10 kDa cutoff spin 
column (Amicon Ultra; Millipore, catalog no.: UFC9010) at
4 ◦ C, 14,000g for 45 min 50 μl of pass through was combined 
with 50 μl of LC–MS grade ACN (Merck, catalog no.: 
1.00029) and directly analyzed via UHPLC (Agilent 1290 
Infinity II UHPLC equipped with a diode array detector 
connected to HRMS with vacuum insulated probe heated 
electrospray ionization (timsTOF HT Mass Spectrometer; 
Bruker). The separation method used the following condi-
tions: Acquity Premier BEH Amide column (2.1 × 150 mm, 
1.7 μm) flow rate 0.4 ml/min, injection volume 1 μl, column 
temperature 45 ◦ C, and mobile phase gradient: 0 min—95% 
A, 10.5 min—87% A, 12 min—60% A, 15 min—60% A, 
15.1 min—95% A, and 20 min—95% A. The mobile phase A 
was ACN, and the mobile phase B was 15 mM aqueous 
ammonium acetate. Both phases contained 0.005% of acetic 
acid, as described (59). The mass spectrometry settings were 
as follows: dry temperature 230 ◦ C; drying gas flow 8 l/min; 
sheath gas temperature 400 ◦ C, sheath gas flow 4 l/min, 
nebulizer 2 bar; capillary voltage 4500 V; and endplate offset 
500 V. The spectra were collected in the range of 20 to 
1300 m/z with a 3 Hz rate. The collision energy was set to 
20 eV. Calibration was performed using an internal cali-
bration solution and CH 3 COONa clusters at the beginning 
of each analysis. The amount of the β-Asp-Arg product was 
assessed using a β-Asp-Arg dipeptide standard, which was 
synthesized by abcr GmbH. The activity of ArgD in the 
presence or absence of CphB was assessed from the for-
mation of NADPH in a coupled enzymatic reaction as 
described (60). The generated NADPH was excited at 
355 nm, and the emitted fluorescence was detected at 
460 nm using a Fluostar Omega plate reader (BMG Lab-
tech). The amount of NADPH formed during the coupled 
enzymatic reaction was extrapolated from an NADPH 
(Sigma–Aldrich, catalog no.: 53-57-6) standard curve. For 
both assays, the enzymes were preincubated for 30 min 
before the addition of the substrate, which was taken as time
0 in the activity measurements. The control reactions con-
tained 1 mg/ml bovine serum albumin (Roth, catalog no.: 
9048-46-8) instead of the corresponding interacting partner 
(ArgD or CphB). Data analyses were performed in GraphPad 
Prism 10 (GraphPad Software).

Data availability
Metabolomics data have been deposited at figshare (https:// 

doi.org/10.6084/m9.figshare.30067027.v1) and are publicly 
available as of the date of publication. Further information 
and requests for resources and reagents should be directed to 
and will be fulfilled by the corresponding author, Éva Kiss 
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