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Abstract
Assembly of photosystem II (PSII), a water-splitting catalyst in chloroplasts and cyanobacteria, requires numerous auxil-
iary proteins which promote individual steps of this sequential process and transiently associate with one or more assembly 
intermediate complexes. In this study, we focussed on the role of a PSII-associated protein encoded by the ssl1498 gene 
in the cyanobacterium Synechocystis sp. PCC 6803. The N-terminal domain of this protein, which is here called Psb34, is 
very similar to the N-terminus of HliA/B proteins belonging to a family of high-light-inducible proteins (Hlips). Psb34 was 
identified in both dimeric and monomeric PSII, as well as in a PSII monomer lacking CP43 and containing Psb28. When 
FLAG-tagged, the protein is co-purified with these three complexes and with the PSII auxiliary proteins Psb27 and Psb28. 
However, the preparation also contained the oxygen-evolving enhancers PsbO and PsbV and lacked HliA/B proteins even 
when isolated from high-light-treated cells. The data suggest that Psb34 competes with HliA/B for the same binding site 
and that it is one of the components involved in the final conversion of late PSII assembly intermediates into functional PSII 
complexes, possibly keeping them free of Hlips. Unlike HliA/B, Psb34 does bind to the CP47 assembly module before its 
incorporation into PSII. Analysis of strains lacking Psb34 indicates that Psb34 mediates the optimal equilibrium of HliA/B 
binding among individual PSII assembly intermediates containing CP47, allowing Hlip-mediated photoprotection at all 
stages of PSII assembly.
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Introduction

Oxygenic photosynthesis is a complex natural process dur-
ing which the energy from sun radiation is deposited into 
energy-rich compounds and reduced biosynthetic cofac-
tors, which are utilized for the conversion of carbon dioxide 
into saccharides and other organic molecules. The crucial 
stage of photosynthetic energy conversion is light-driven 
photosynthetic electron flow, which is fed by electrons 
from Photosystem II (PSII), a large pigment-binding pro-
tein complex of cyanobacteria, algae, and higher plants. 
This complex uses water as an electron donor and releases 

molecular oxygen as a by-product (Barber 2003). PSII is 
very complex, containing nearly two dozen protein subunits, 
a large number of pigments and other organic and inorganic 
cofactors (Umena et al. 2011). The biogenesis of PSII is 
thought to involve a stepwise interconnection of several pig-
ment–protein intermediate complexes, here called modules, 
each containing one of the large pigment-binding proteins 
(D1, D2, CP47 and CP43), adjacent small subunits, pig-
ments, and other cofactors, as well as auxiliary proteins 
(Komenda et al. 2012b). In the cyanobacterium Synecho-
cystis sp. PCC 6803 (hereafter Synechocystis), assembly of 
PSII has been shown to begin with the association of the D1 
and D2 modules  (D1mod and  D2mod) consisting of D1-PsbI 
and D2-cytochrome  b559 pairs, respectively. The resulting 
PSII reaction centre complex (RCII) binds the CP47 mod-
ule  (CP47mod) to form the PSII core complex lacking CP43 
(RC47; Komenda et al. 2004; Boehm et al. 2012). Subse-
quently, addition of the CP43 module  (CP43mod) results in 
the formation of a monomeric PSII core complex (PSII(1); 
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Komenda et al. 2012a). PSII(1) then undergoes the process 
of light-driven formation of the oxygen-evolving complex 
(OEC) containing the  CaMn4O5 cluster (Bao and Burnap 
2016) and the oxygen-evolving enhancer (OEE) subunits 
PsbO, PsbU and PsbV, which shield the cluster (Roose et al. 
2016). The final step of PSII assembly appears to be dimeri-
zation of PSII(1) into the PSII dimer (PSII(2); Komenda 
et al. 2012b).

PSII assembly in cyanobacteria is assisted by a large 
number of auxiliary protein factors playing more or less 
important roles during various stages of the process. Some 
of the early-stage factors like Ycf48 (Yu et al. 2018) and 
RubA (Kiss et al. 2019) are important for insertion of chlo-
rophyll (Chl) into RCII. Others, like Psb28 (Dobáková et al. 
2009) or Psb27 (Nowaczyk et al. 2006; Roose and Pakrasi 
(2008); Komenda et  al. 2012a), participate in the later 
stage when the PSII core complex is formed and is to be 
converted into the oxygen-evolving dimer. So-called high-
light-inducible-proteins (Hlips) belong to auxiliary factors 
involved in both early and late stages of the assembly pro-
cess (for review See Komenda and Sobotka, 2016). Genes 
encoding these single transmembrane helix proteins form a 
family that is present in most cyanobacterial species and are 
expressed under high irradiance and other stress conditions 
(Dolganov et al.1995). The amino acid sequence of their 
transmembrane helix is quite similar to that of the first or 
third helix of plant light-harvesting complexes (Montané and 
Kloppstech 2000), including the domain binding Chl (Cab 
domain). Therefore, Hlips are also alternatively called small 
cab-like binding proteins (Scps, Funk and Vermaas 1999). 
The Synechocystis genome contains four genes encoding 
small proteins with a Cab-like domain (HliA-D). HliA, HliB 
and HliC have been detected in the CP47 module and later 
PSII assembly intermediates containing CP47 (Promnares 
et al. 2006; Yao et al.2007; Konert et al. 2021), while HliD 
together with HliC has been found in association with RCII 
(Knoppová et al. 2014) and Chl synthase (Chidgey et al. 
2014). Although single hlip deletion mutants did not show 
apparent phenotypic differences from wild type (WT), a 
mutant lacking all Hlips is very sensitive to high light and 
oxidative stress (Havaux et al. 2003) and exhibits increased 
generation of reactive oxygen species as well as fast photo-
damage (Sinha et al. 2012), suggesting the crucial role of 
these proteins during acclimation to stress conditions. Their 
protective role has been supported by the analyses of isolated 
HliD and HliC that bind Chl and β-carotene (Knoppová et al. 
2014; Shukla et al. 2018) and can efficiently quench Chl 
excitation via the S1 state of β-carotene (Staleva et al. 2015).

The Synechocystis genome also encodes a protein with 
an N-terminus remarkably similar to the N-termini of two 
members of the Hlip family, HliA and HliB. However, this 
protein, encoded by the ssl1498 gene, does not contain the 
Cab domain, and therefore, it most probably does not bind 

Chl and it is not expected to quench Chl excitation. In cyano-
bacterium Thermosynechococcus elongatus, the homolog of 
this protein was recently detected in PSII assembly interme-
diates (T. elongatus; Zabred et al. 2021; Xiao et al. 2021) in 
which it may contribute, together with Psb28, to the preven-
tion of light-induced oxidative damage to these complexes. 
This protein has been named Psb34 (Zabret et al. 2021).

In the current study, we identified the Synechocystis 
Psb34 protein as a component of the dimeric and mono-
meric PSII complex and RC47. We constructed a Psb34-less 
mutant that exhibits an increased accumulation of HliA/B 
under standard conditions, suggesting that the N-terminal 
sequence present in both Psb34 and HliA/B is important 
for their binding to CP47. Unlike HliA/B, Psb34 does not 
bind to the CP47 assembly module and data suggest that it 
is important for the balanced distribution and recycling of 
HliA/B among the individual CP47-containing PSII assem-
bly intermediates. Co-isolation of tagged Psb34 with PSII 
complexes containing both assembly factors and OEEs sug-
gests that Psb34 participates in the late stages of PSII bio-
genesis when the assembly intermediates are converted into 
the fully functional PSII complexes.

Materials and methods

Construction of mutant strains

The glucose-tolerant strain of Synechocystis sp. PCC 6803 
GT-P (Tichý et al. 2016) was used as the control WT strain 
and all strains used in this study and derived from this WT 
are listed in Online resource Table S1.

The Psb34-less strain, ΔPsb34 was constructed by the 
replacement of the psb34 gene with a zeocin antibiotic 
resistance cassette. To make an appropriate deletion con-
struct, we applied the two-step megaprimer method (Ke and 
Madison 1997). In the first step, we amplified the sequences 
upstream and downstream (500 bp) of the psb34 gene using 
fusion primers (Psb34-2Z and Psb34-3Z, Online resource 
Table S2) recognizing in one direction the psb34 gene and 
the zeocin cassette in the other direction. The fusion primers 
were used in pairs with Psb34 forward and reverse primers 
(Online resource Table S2). In the second step, we amplified 
the zeocin resistance cassette (Streptoalloteichus hindusta-
nus, Invitrogen) using PCR products from the first step as 
primers. Finally, for amplifying the complete deletion con-
struct, we utilized the psb34 forward and reverse primers. 
To construct the Psb34-less mutant strains, the cells of WT 
and other strains used were transformed with the final PCR 
product (Online resource Fig. S1). Mutants were segregated 
using a gradually increasing concentration of zeocin. Segre-
gation was confirmed by PCR using Psb34-1Z and Psb34-4Z 
primers (Online resource Table S2).
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Plasmid pPD-NFLAG was used for the construction of 
strains expressing FLAG-tagged Psb34 under the control of 
the psbAII promoter as described in Chidgey et al. (2014). 
The primers used are shown in Online resource Table S2. 
Subsequently, the construct was used for the transformation 
of ∆Psb34 cells. The mutant was selected for kanamycin 
resistance, segregated using a gradually increasing concen-
tration of kanamycin and its full segregation was confirmed 
by PCR utilizing gene-specified primers (Online resource 
Table S2).

Growth conditions

The strains were grown in liquid BG-11 medium under 
40 µmol photons  m−2   s−1 (normal light, NL) at 29  °C. 
Medium was supplemented with 5 mM glucose for non-
autotrophic ∆CP47 and ∆CP43 mutants. For low-light (LL) 
and high-light (HL) treatments, the cells were first grown 
under NL conditions until the exponential phase  (OD750 nm 
of about 0.6–0.8). Subsequently, the cultures were trans-
ferred to 5 µmol photons  m−2  s−1 (LL) or 500 μmol photons 
 m−2  s−1 (HL).

For growth on agar plates, the liquid culture with cells in 
the exponential phase was diluted to  OD750 nm of 0.1, 0.01 
and 0.001 and spotted on BG-11 agar plates containing 
BG-11 and 10 mM TES/NaOH, pH 8.0. For non-autotrophic 
strains, the agar additionally contained 5 mM glucose. Plates 
were exposed to LL, NL, HL or intermittent light (IL, 5 min 
500 µmol photons  m−2  s−1 and 5 min dark) for 8 days.

Radioactive labelling

Radioactive pulse labelling of the cells was performed at 
500 µmol photons  m−2  s−1 and 30 °C using a mixture of 
 [35S]Met and  [35S]Cys (Hartmann Analytic Gmbh, Braun-
schweig, Germany) as described previously (Dobáková et al. 
2009).

Whole‑cell absorption spectroscopy and pigment 
determination

Absorption spectra of whole cells were measured at room 
temperature using a UV-3000 spectrophotometer (Shimadzu, 
Japan) in cultures with the identical  OD750 nm. For routine 
determination of Chl content, pigments were extracted from 
cell pellets with 100% methanol and Chl concentration was 
determined spectroscopically (Ritchie 2006).

Low‑temperature fluorescence spectroscopy

77 K Chl fluorescence emission spectra were measured 
in cultures with the identical  OD750 nm using an SM 9000 
spectrophotometer (Photon Systems Instruments, Czech 

Republic) at an excitation wavelength of 455  nm, as 
described in (Kotabová et al. 2021). The spectra were 
normalized to the 570 nm maximum of rhodamine (1 µM) 
used as an internal standard.

PSII activity

The activity of PSII was measured as the rate of oxygen 
evolution using a Clark-type electrode in the presence of 
the artificial electron acceptors p-benzoquinone (2.5 mM) 
and potassium ferricyanide (1 mM). The data are aver-
ages ± SD of three biological experiments, three repeti-
tions in each.

Preparation of membrane fraction and analysis 
of proteins

For small-scale preparation of cellular membranes, cells 
(40 ml) were harvested at  OD750nm ≈ 0.6–0.8, pelleted, 
washed, and resuspended in buffer A (25 mM MES/NaOH, 
pH 6.5, 10 mM  CaCl2, 10 mM  MgCl2, 25% glycerol). Cells 
were broken using zirconia–silica beads in a tissue homoge-
nizer (Precellys Evolution, Bertin Instruments, France). The 
membrane and soluble fractions were separated by centrifu-
gation at 36,000×g for 20 min. Afterwards, the membranes 
were resuspended in buffer A. After measurement of Chl 
concentration, isolated membranes were solubilized with 
β-dodecyl-maltoside (DDM, ratio DDM/Chl = 60 (w/w)) and 
then analysed using two-dimensional PAGE consisting of 
clear native (CN) PAGE in a 4–14% gradient gel (Komenda 
et al. 2019) and SDS-PAGE in a denaturing 16–20% gradient 
gel containing 7 M urea (2D-CN/SDS-PAGE). The stand-
ard one-dimensional SDS-PAGE was performed in the same 
12–20% denaturing gel and membrane proteins were solu-
bilized with 1% (w/v) SDS and 1% (w/v) DTT for 30 min at 
room temperature prior to loading onto the gel. For autoradi-
ography, the gels were stained with Coomassie Blue (CBB), 
destained, dried and exposed to a Phosphoimager plate for 
24 h. For the detection of proteins, the gels were stained with 
SYPRO Orange and subsequently transblotted to a polyvi-
nylidene difluoride (PVDF) membrane. We used anti-rabbit 
antibodies specific to: D1, CP47 and CP43 (Komenda et al. 
2008); PsaD (Xu et al. 1994) and HliA/B (cat. no. AS10 
1603, Agrisera, Sweden). We also prepared a new anti-rabbit 
antibody against Psb34, specific to a peptide 25–36 of the 
Synechocystis protein. The blots were developed using the 
anti-rabbit secondary antibody conjugated with horseradish 
peroxidase (Sigma-Aldrich, USA) and chemiluminescence 
substrate Immobilon Crescendo (Merck, USA). Western blot 
analyses were repeated at least twice, autoradiograms three 
times, all with consistent results.
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FLAG‑tag protein purification

For FLAG-tag protein purification, 2 L of cellculture were 
grown in 10L flasks under 40 µmol photons  m−2   s−1 in 
BG-11 medium until they reached the exponential phase 
 (OD750nm ≈ 0.6–0.8) and then were exposed to 500 µmol 
photons  m−2  s−1 for 2 h. The cell culture was agitated with 
a magnetic stirrer and bubbled with air. Cells were centri-
fuged, washed and resuspended in buffer A containing a 
protease inhibitor cocktail (Roche, USA, or Sigma-Aldrich, 
USA). Cells were broken using a tissue homogenizer (Pre-
cellys Evolution, Bertin Instruments, France). The mem-
branes were solubilized with β-DDM and FLAG-tagged 
proteins were pulled down using the anti-FLAG M2 affin-
ity gel (Sigma-Aldrich, USA) according to Koskela et al. 
(2020). The isolation was repeated three times with consist-
ent results.

Mass spectrometric analysis of isolated preparations

The proteins in whole isolated preparations were analysed 
after acetone precipitation. 50  µl of acetone cooled to 
− 20 °C were added to the whole protein fraction and after 
one hour of incubation at − 20 °C, the sample was spun 
down for 10 min at 20,000×g and 4 °C. Supernatant was 
removed and the rest of the acetone was evaporated under a 
fume hood for approx. 30 min. The precipitate was dissolved 
in 10 µl of 40 mM ammonium bicarbonate in 9% acetoni-
trile containing 0.4 mg trypsin (proteomics grade; Sigma-
Aldrich) and incubated at 37 °C overnight. Excess liquid was 
removed by Speedvac, and 40 µl of solvent A (0.1% formic 
acid in water) was added to the 10 µl of tryptic digest. MS 
analysis was performed on a NanoElute UHPLC (Bruker) 
online coupled to the ESI Q-ToF a high-resolution mass 
spectrometer (Bruker Impact HD). Trapping was followed 
by a reverse-phase UHPLC two column separation, using the 
Thermo Trap Cartridge as a trap column and Bruker Fifteen 
C18 analytical column (75 mm i.d. 150 mm length, parti-
cle size 1.9 mm, reverse phase). The linear gradient elution 
ranged from 95% solvent A (0.1% formic acid in water) to 
95% solvent B (0.1% formic acid in acetonitrile and water 
(90/10)) at a flow rate of 0.3 ml/min and time 60 min. Eluted 
peptides flowed directly into the ESI source. Raw data were 
acquired in the Dynamic MS/MS Spectra Acquisition with 
the following settings: dry temperature of 150 °C, drying 
gas flow of 3 l/min, capillary voltage of 1300 V and end-
plate offset of 500 V. The spectra were collected in the range 
150–2000 m/z with spectra rate 2 Hz. The CID was set as a 
ramp from 20 to 60 eV on masses 200–1200, respectively. 
The acquired spectra were submitted for database search 
using the MaxQuant software against Synechocystis protein 
databases from the Uniprot Web site (https:// www. unipr 
ot. org/ prote omes/ UP000 001425). N-terminal acetylation, 

deamidation of Asn and Gln, carbamidomethylation of Cys 
and oxidation of Met were set as variable modifications. 
Identification of three consecutive y-ions or b-ions was 
required for a positive peptide match.

Results

Psb34 associates with CP47‑containing PSII 
complexes

Detailed analysis of complexes previously isolated using the 
FLAG-tagged PSII assembly factor Psb28 (Bečková et al. 
2017) revealed the presence of a protein, the homologue of 
which (encoded by the tsl0063 gene) was recently identified 
in PSII assembly intermediate complexes of T. elongatus 
(Zabret et al. 2021; Xiao et al. 2021) and named Psb34. In 
Synechocystis, this protein is encoded by the ssl1498 gene 
and in the C-terminal FLAG-tagged Psb28 (Psb28-FLAG) 
preparation analysed using 2D-CN/SDS-PAGE, it was iden-
tified as a protein of about 9 kDa located in a PSII assembly 
intermediate RC47 (Fig. 1). We prepared a specific antibody 
against it to test for the presence of Psb34 in membrane com-
plexes of WT cells (Fig. 2). We confirmed that the protein is 
PSII-specific, as we detected it in PSII(2), PSII(1) and RC47 
(Fig. 2). We were also interested in whether Psb34 binds to 
the RCII complex lacking CP47 and CP43 (Komenda et al. 
2004). Therefore, membranes of a CP47-less strain accu-
mulating RCII (Komenda et al. 2004) were also assessed for 

Fig. 1  2D analysis of membrane proteins of the Psb28-FLAG prepa-
ration isolated from the strain expressing Psb28-FLAG. The prepara-
tion was analysed using 2D-CN/SDS-PAGE. After the first dimen-
sion, the gel was photographed (1D color) and scanned for Chl 
fluorescence (1D fluor). After separation in the second dimension, the 
2D gel was stained using Coomassie Blue (2D CBB stain) and des-
ignated proteins were determined by MS. Designation of complexes: 
PSII(1), monomeric PSII core complexes; RC47(2) and RC47, the 
dimeric and monomeric PSII core complex lacking CP43; CP43, PSII 
antenna CP43 module; FP, free pigments. The loaded sample con-
tained 0.5 µg of Chl

https://www.uniprot.org/proteomes/UP000001425
https://www.uniprot.org/proteomes/UP000001425
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the presence of Psb34. The protein was missing in RCII and 
only a small amount of Psb34 was detected in the region of 
unassembled proteins (Fig. 2), so the interaction of Psb34 
with PSII is dependent on the presence of CP47.

The N-terminal amino acid sequence of Psb34 shows a 
remarkable similarity to that of HliA/B members of the Hlip 
family (Fig. S2). Since HliA/B associates with CP47-con-
taining complexes in a PsbH-dependent manner (Promnares 
et al. 2006), we also tested the ability of Psb34 to bind PSII 
complexes in a mutant lacking PsbH. Indeed, in the absence 
of this small PSII protein, Psb34 was not present in PSII 
complexes, and we only detected it in the region of unas-
sembled proteins using 2D-CN/SDS-PAGE (Fig. S3).

To further confirm the association of Psb34 with PSII 
complexes, we constructed a strain lacking the original 
Psb34 but expressing its N-terminally FLAG-tagged variant 
under the psbA2 promotor. Purification of the FLAG-tagged 
Psb34 from detergent-solubilized mutant membranes using a 
FLAG-specific immunoaffinity pull-down resulted in co-iso-
lation of PSII(2), PSII(1) and RC47 as shown using 2D-CN/
SDS–PAGE (Fig. 3). Analysis of the pull-down using mass 
spectrometry revealed the presence of PSII auxiliary factors 
that assist PSII biogenesis such as Psb27 and Psb28, but 
PsbO and PsbV, subunits stabilizing the oxygen-evolving 
 CaMn4O5 cluster, were also detected in the preparation 

Fig. 2  Identification of Psb34 protein in the membranes of WT and 
CP47-less (ΔCP47) strains. Membranes isolated from the strains 
were analysed using 2D-CN/SDS-PAGE. After the first dimension, 
the gel was photographed (1D color) and scanned for Chl fluores-
cence (1D fluor). After separation in the second dimension, the 2D 
gel was stained using SYPRO Orange (2D SYPRO stain), blotted to 
a PVDF membrane (2D blots), and Psb34, CP47, D1 and PsaD were 
detected by specific antibodies. Designation of complexes: RCCS, 
supercomplex of PSI and PSII; PSI(3) and PSI(1), trimeric and mon-
omeric Photosystem I; PSII(2), dimeric PSII core complex; RCII* 
and RCIIa, PSII complexes lacking CP43 and CP47; CP47m*, CP47 
module containing Psb35; CP47m and CP43m, unassembled CP47 
and CP43 modules; other designations as described in Fig.  1. Each 
loaded sample contained 5 µg of Chl

Fig. 3  2D analysis of membrane proteins of the FLAG-Psb34 prepa-
ration isolated from the strain expressing FLAG-tagged Psb34. The 
preparation was analysed using 2D-CN/SDS-PAGE. After the first 
dimension, the gel was photographed (1D color) and scanned for Chl 
fluorescence (1D fluor). After separation in the second dimension, the 
2D gel was stained using SYPRO Orange (2D SYPRO stain), blotted 
to a PVDF membrane (2D blots) and CP47, CP43 and FLAG-Psb34 
were detected by specific antibodies. Designation of complexes is 
described in Figs. 1 and 2. The loaded sample contained 0.5 µg of Chl

Table 1  List of proteins identified by mass spectrometry of the 
FLAG-Psb34 pull-down isolated from FLAG-Psb34/∆Psb34 cells 
exposed to high light (500 µmol photons  m−2  s−1) for 2 h

a PLGS score is calculated by Protein Lynx Global Server (PLGS 
2.2.3) software (Waters) and is a statistical measure of peptide assign-
ment accuracy

Protein, ID Molecular 
weight 
(kDa)

Length Coverage 
(%)

Number of 
peptides

PLGS 
 scorea

CP47
P05429

55,902 507 40.8 20 311

CP43
P09193

50,302 460 39.3 17 199

D2
P09192

39,490 352 261 7 79

D1
P16033

39,721 360 20.3 6 80

Psb28
Q55356

12,590 112 75 6 68

Psb27
P74367

14,780 134 49.3 5 56

PsbH
P14835

7110 64 21.9 1 15

PsbO
P10549

29,911 274 7.3 1 10

PsbV
Q55013

17,884 160 11.9 1 6
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(Table 1). Interestingly, no Hlips were found in the prepara-
tion although it was isolated from membranes of high light-
exposed cells, suggesting that binding of Psb34 and HliA/B 
is mutually exclusive. 

The Psb34‑less mutant shows no apparent 
phenotypic distinction from WT

To define the function of Psb34 protein, we constructed 
a mutant in which the psb34 gene was replaced with a 
zeocin resistance cassette, and we compared it with WT. 
Under standard growth conditions, ΔPsb34 cells did not 
show any remarkable difference from WT in pigmenta-
tion (Fig. 4a), PSII/PSI ratio (Fig. 4b) or oxygen-evolving 
activity (Fig. 4c). Moreover, growth under normal, low, 
high and intermittent light conditions was also very similar 
between WT and ΔPsb34 cells (Fig. 4d). We also analysed 

membranes isolated from both strains using 2D-CN/SDS-
PAGE to compare the pattern of membrane complexes 
between strains. Native gel, staining of the proteins in the 2D 
gel, and subsequent immunoblotting using antibodies spe-
cific to large PSII proteins did not reveal any apparent dif-
ference between WT and ΔPsb34 (Fig. 5). However, immu-
nodetection of Psb34 confirmed the absence of this protein 
in ΔPsb34 (Fig. 5) and the HliA/B proteins, which are unde-
tectable in PSII complexes of WT under standard growth 
conditions, were clearly observed in PSII(1) of the mutant 
cells. This result indicates that Psb34 and HliA/B bind to 
the same or a similar site within PSII and that in its absence 
HliA/B can bind to PSII complexes even in unstressed cells. 
An alternative explanation is that the absence of Psb34 
causes oxidative stress (Zabred et al. 2021), which leads to 
activation of HliA/B gene transcription and subsequently to 
increased HliA/B protein levels even under NL conditions. 

Fig. 4  Whole-cell absorption spectra (a), 77 K Chl fluorescence spec-
tra (b), PSII-mediated oxygen evolution (c) and growth (d) of WT 
and ΔPsb34 strains. a Whole-cell absorption spectra of WT (black 
solid line) and ΔPsb34 (red dashed line) liquid cultures are shown 
after normalization to the optical densities at 750  nm. b For 77  K 
fluorescence spectra equal amounts of cells from WT (black solid 
line) and ΔPsb34 (red dashed line) liquid cultures were frozen in liq-
uid nitrogen and excited at 435 nm; spectra were normalized to the 
emission peak of the internal standard rhodamine at 570 nm. c The 

light-saturated rate of oxygen evolution in the presence of 2.5  mM 
p-benzoquinone and 2 mM potassium ferricyanide was measured in 
the exponentially grown cultures using a Clark electrode; values rep-
resent means of three biological replicates and three measurements 
each ± SD. d Cells of WT and ΔPsb34 were spotted on the agar 
plates containing BG-11 and 10 mM TES/NaOH, pH 8.0 and grown 
under LL, NL, HL or intermittent light (IL, 5 min 500 µmol photons 
 m−2  s−1/5 min dark) for 8 days
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However, our analysis of HliA/B transcripts revealed compa-
rable HliA/B transcript levels in both strains, which cannot 
explain the appearance of HliA/B in PSII(1) in WT cells 
under standard conditions.

We also monitored the synthesis of membrane proteins in 
WT and ΔPsb34 mutant cells by radioactive labelling using 
a mixture of  [35S]Met/Cys. Membranes isolated from these 
cells were analysed by 2D-CN/SDS-PAGE and autoradiog-
raphy (Fig. 6). Labelling of the main PSI and PSII proteins 
including HliA/B was very similar in both strains, but there 
was a difference in the distribution of labelled HliA/B pro-
teins among PSII complexes. When compared with WT, 
HliA/B in ΔPsb34 were labelled less in CP47m and more in 
PSII(1) and RC47. This indicates that Psb34, which does not 
interact with CP47m, could be important for the sufficient 
association of HliA/B with CP47m by limiting their binding 
to PSII(1) and RC47.

Accumulation of HliA/B and Psb34 in WT and ∆Psb34 
cells exposed to high irradiance

The physiological role of HliA/B has yet to be fully clari-
fied, although it is assumed that they protect their associated 
PSII complexes from photodamage (Komenda and Sobotka 
2016) and in this way contribute to the acclimation of cyano-
bacteria to high light and other stresses. Accumulation of 
His-tagged HliA and HliB under high irradiance has been 

individually followed (He et al. 2001), but this analysis has 
not allowed for their parallel detection and a direct compari-
son of their levels. Since our 1D gel system allows for paral-
lel detection, and as HliA has a slightly lower mobility than 
HliB (Yao et al. 2007; Konert et al. 2021), we followed the 
accumulation of HliA and HliB during 24-h HL treatment 
(Fig. 7). The Western blot analysis showed that accumulation 
of HliB in WT was highest during the first 2 h of illumina-
tion when its level largely exceeded the level of HliA. Later, 
its amount dropped way down and became barely detectable 
after 8 h of illumination. HliA reached its maximum after 
2 h, then its level slowly decreased over time. Nevertheless, 
after 24 h of high irradiance, its signal remained apparent. In 
ΔPsb34, the overall level of both Hlips was markedly higher 
compared with WT, and levels of HliA and HliB remained 
high over the entire 24-h period (Fig. 7). Data suggest that 
HliA is especially important during long-term stress, while 
HliB seems to play a main role during the initial stage of HL 
treatment. The significant decrease in HliA/B levels during 
HL treatment in WT contrasted with a high and stable level 
of HliA/B in ΔPsb34. The amount of Psb34 in WT quickly 
decreased, and after 2 h, it became undetectable (Fig. S4), 
again confirming the inverse relationship between Psb34 and 
HliA/B.

To obtain more complete information about the distribu-
tion of HliA/B among PSII complexes in HL-treated cells, 
we analysed membranes isolated from WT and ∆Psb34 cells 
exposed to HL for 24 h using 2D-CN/SDS-PAGE. This anal-
ysis confirmed a generally higher HliA/B content in cells of 
∆Psb34 when compared with WT. These proteins were also 
much more abundant in PSII(1), especially in RC47, than in 
CP47m in ∆Psb34 cells, while in WT, the distribution was 
more homogenous (Fig. 8). Since in 2D gels we were not 
able to separate HliA and HliB, we assessed their individual 
content in PSII complexes by analysing HL-exposed HliA- 
and HliB-less strains. In agreement with WT 1D gel data 
(Fig. 7), the 2D gel in combination with immunoblotting 
showed a low accumulation of HliB in PSII(1), RC47 and 
CP47m in the absence of HliA after 24 h of HL, and this was 
also accompanied by decreases in the amounts of PSII(1), 
PSII(2) and Psb34. In the absence of HliB, the level of HliA 
in PSII complexes increased during HL treatment and the 
levels of PSII complexes and Psb34 remained rather stable 
(Fig. S5a).

To see a possible effect of Psb34 on the accumulation 
of individual HliA and HliB, we additionally deleted the 
ssl1498 gene in the HliA- and HliB-less mutants. The result-
ing ∆HliA/∆Psb34 and ∆HliB/∆Psb34 double mutants 
were again exposed to HL and the levels of HliA, HliB and 
PSII were monitored after 24 h of HL treatment (Fig. S5b). 
Based on our previous results obtained with WT and the 
∆HliA single mutant, we expected a decreasing amount 
of HliB in the ∆HliA/∆Psb34 double mutant after 24 h of 

Fig. 5  2D analysis of membrane proteins of WT and ΔPsb34. 
Membranes isolated from the strains grown under NL were ana-
lysed using 2D-CN/SDS-PAGE. After the first dimension, the gel 
was photographed (1D color) and scanned for Chl fluorescence (1D 
fluor). After separation in the second dimension, the 2D gel was 
stained using SYPRO Orange (2D SYPRO stain), blotted to a PVDF 
membrane (2D blots) and CP47, CP43, D1, Psb34 and HliA/B 
were detected by specific antibodies. Designation of complexes is 
described in Fig. 2. Each loaded sample contained 5 µg of Chl
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HL exposure. However, we found HliB accumulating in the 
∆HliA/∆Psb34 strain even after 24 h of HL (Fig. S5b). This 
result suggested that the absence of Psb34 facilitated binding 
of HliB to PSII and allowed accumulation of HliB over the 
entire 24-h period. On the other hand, the high accumula-
tion of HliA in ∆HliB/∆Psb34 cells after 24-h HL treatment 
(Fig. S5b) was consistent with the results obtained using the 
single HliB-null mutant (Fig. S5a). In both double mutants, 
Hlips were present in PSII(1) and as unassembled proteins 
but were absent in CP47m, suggesting that Psb34 might 
promote the HliA/B binding to CP47m via the detachment 
of part of HliA/B from PSII(1). Overall, the data showed 
that HliA is a more stable protein, important during long-
term acclimation of cells to stress, while the level of HliB 
is more variable, quickly responding to stress. HliB, com-
pared to HliA, is also more affected by the absence of Psb34. 
Interestingly, the ∆Psb34 strain lacking HliA was the only 
Psb34-less mutant which showed slower growth under an 
intermittent light regime, while the growth of ∆Psb34 and 

∆HliB/∆Psb34 mutants did not differ from WT in any light 
regime (Fig. S6).

In the CP43‑less strain HliA/B extremely 
overaccumulate when Psb34 is absent

Previous data showed that HliA/B and Psb34 were bound 
mostly in PSII(1), while their binding to RC47 was hardly 
visible due to the absence of RC47 in a majority of the 
strains (Figs. 2, 5 and S5). In order to judge whether all 
three proteins also bind to RC47, we analysed cells lacking 
CP43 alone or CP43 together with Psb34, HliA and HliB. 
It has been shown that removal of CP43 protein from Syn-
echocystis cells leads to accumulation of the RC47 com-
plex (Komenda et al. 2004), which also contains HliA/B 
even under standard growth conditions (Boehm et  al. 
2012). Western blot analysis of membranes isolated from 
the ∆CP43 single mutant and the ∆CP43/∆Psb34 double 
mutant under different conditions (NL, 2 h of HL and 24 h 

Fig. 6  2D analysis of radio-
actively labelled membrane 
proteins of WT and ∆Psb34 
autotrophic strains. Membranes 
isolated from radioactively 
labelled cells were analysed 
using 2D-CN/SDS-PAGE. After 
the first dimension, the gel was 
photographed (1D color) and 
scanned for Chl fluorescence 
(1D fluor). After separation in 
the second dimension, the 2D 
gel was stained with Coomas-
sie Blue (2D CBB stain) and 
the radiolabelled proteins 
were subsequently detected by 
autoradiography (2D autorads). 
Designation of complexes as 
described in Fig. S3; RC47 
is PSII core complex lacking 
CP43; closed arrows designate 
different unassembled D1 
forms and in the lower part of 
the autoradiogram HliA/B in 
PSII(1) and RC47; the empty 
arrows designate HliA/B in 
CP47m. Each loaded sample 
contained 5 µg of Chl
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of HL) indicated a decreased amount of HliA/B upon light 
stress in ∆CP43 but their strong overaccumulation under 
both NL and HL conditions in ∆CP43/∆Psb34 (Fig. 9).

We also analysed membranes of ∆CP43 and 
∆CP43/∆Psb34 mutants after 24 h of HL using 2D-CN/
SDS-PAGE to see the distribution of HliA/B among 

PSII complexes. In ∆CP43 cells, HliA/B were pre-
sent in RC47 and CP47m in approximately the same 
amounts (Fig. 10a). In contrast, in the ∆CP43/∆Psb34 
strain, HliA/B were much more abundant in RC47 than 
in CP47m. Since Psb34 is not able to bind to CP47m, 
the data again support the hypothesis that Psb34 medi-
ates an optimal equilibrium between the HliA/B content 
in RC47 and CP47m, and in this way may provide better 
photoprotection to CP47m. Also, the level of RC47 was 
lower and the CP47 signal belonging to CP47m was rather 
smeared in ∆CP43/∆Psb34 when compared to ∆CP43 
indicating an oxidative damage. In agreement with these 
data, ∆CP43/∆Psb34 showed slower growth under high 
irradiance in comparison with ∆CP43 (Fig. 10b). Interest-
ingly, in LL, the double mutant grew better than ∆CP43 
alone. To find further support for the facilitated binding 
of HliB to RC47 in the absence of Psb34, we constructed 
∆CP43/∆HliA/∆Psb34 and ∆CP43/∆HliB/∆Psb34 triple 
mutants and analysed their HliA/B distribution among 
PSII complexes after 24-h HL exposure using 2D-CN/
SDS–PAGE. In the ∆CP43/∆HliA/∆Psb34 strain, HliB 
was only detected in the RC47 intermediate (Fig. S7a). 
This contrasted with the results of a similar experiment 
using the double ∆CP43/∆HliA mutant, in which a drastic 
decrease in HliB level in RC47 was detected after 24 h HL 
treatment (Fig. S7b). In the ∆CP43/∆HliB/∆Psb34 triple 
mutant, HliA also overaccumulated after 24 h HL expo-
sure (Fig. S7a), but this was in agreement with the results 
using the ∆CP43/∆HliB double mutant (Fig. S7b). This 
strongly suggests that removal of Psb34 affects the amount 
of HliA in the RC47 complex much less than that of HliB. 
In both triple mutants, there were no HliA/B associated 
with CP47m, again supporting the importance of Psb34 
for HliA/B binding to CP47m.

Fig. 7  1D analysis of the thylakoid membrane proteins of WT and 
∆Psb34 exposed to NL and to HL (500 μmol photons  m−2  s−1) for 1, 
2, 4, 8, 12 and 24 h. Membranes isolated from the strains were ana-
lysed using SDS-PAGE and 1D gel was stained with SYPRO Orange 
(1D SYPRO stain) and blotted onto a PVDF membrane (1D blots) 
and HliA/B were detected with specific antibody. The upper line in 
1D blot belongs to HliA and the lower line belongs to HliB. SYPRO-
stained gel shows equal loading of the samples. Each loaded sample 
contained 2 µg of Chl (100%)

Fig. 8  2D analysis of membrane proteins from WT and ∆Psb34 
strains exposed to HL for 24 h. Membranes isolated from the strains 
were analysed using 2D-CN/SDS-PAGE. After the first dimension, 
the gel was photographed (1D color) and scanned for Chl fluores-
cence (1D fluor). After separation in the second dimension, the 2D 
gel was stained with SYPRO Orange (2D SYPRO stain) and blot-
ted onto a PVDF membrane (2D blots), and HliA and CP47 were 
detected with specific antibodies. Designation of complexes as 
described in Fig. 2. Each loaded sample contained 5 µg of Chl

Fig. 9  1D analysis of the thylakoid membrane proteins of ∆CP43 and 
∆CP43/∆Psb34 exposed to NL and to HL conditions. NL: normal 
light (40  µmol photons  m−2   s−1) HL: high light (500  µmol photons 
 m−2  s−1). The 1D gel was stained with SYPRO Orange (2D SYPRO 
stain) and blotted onto a PVDF membrane (1D blots), and HliA/B 
were detected with specific antibodies. SYPRO-stained gel shows 
equal loading of the samples. Each loaded sample contained 2 µg of 
Chl
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Discussion

In the present study, we investigated a protein designated 
Psb34, a homologue of which was recently identified within 
the Psb28-containing PSII assembly complexes of T. elon-
gatus (Zabret et al. 2021; Xiao et al. 2021). Initially, we 
detected Psb34 in purified Psb28-FLAG-containing RC47 
(Fig. 1). This protein exhibits high similarity to the HliA 
and HliB members of the Hlip family at its N-terminus, but 
completely lacks the Chl binding motif in its transmembrane 
helix, which indicates that the function of Psb34 differs 
from HliA/B. We detected the protein in PSII(2), PSII(1) 
and RC47 but not in RCII and CP47m. This indicates that 
Psb34 and HliA/B bind to the same or a similar site on CP47 
incorporated within PSII. In agreement with this, the bind-
ing of Psb34 to PSII complexes is inhibited or weakened in 
the absence of PsbH, a CP47-associated small PSII protein 
(Fig. S3), and this is also valid for HliA/B (Promnares et al. 
2006). A common binding site for Psb34 and HliA/B was 
also strongly supported by co-isolation of the tagged Psb34 
and HliA/B with a similar spectrum of CP47-containing 
PSII complexes. However, FLAG-Psb34 never co-isolated 
with HliA/B, even when isolated from HL-exposed cells 
(Table 1), and Psb34 was never detected in the His-HliA/B 
preparations (Konert et  al. 2021). In addition, the His-
HliA/B preparations contained the recently described Psb35 
protein-stabilizing Hlips (Konert et al. 2021; Pascual Aznar 
et al. 2021), while FLAG-Psb34 preparations were free of 
this protein. This result also indicates that the additional 
helix observed in the PSII assembly intermediate from T. 
elongatus in proximity to the Psb34 homologue is neither 
Psb35 nor HliA/B (Xiao et al. 2021). It has been shown 
that the N-terminal sequence of Psb34 notably contributes 
to its binding to PSII assembly intermediates (Zabret et al. 
2021; Xiao et al. 2021). Its high similarity to the sequence 
of HliA/B suggests the competitive binding of both proteins 
to the same binding site formed by the stromal exposed resi-
dues of CP47, D1, PsbH and PsbL (Online resource Fig. S2). 
Nevertheless, until the ultimate evidence for it is found based 
on a high-resolution structure of PSII complexes with bound 
HliA/B, we cannot completely exclude the possibility that 
HliA/B bind to a different site and this binding modifies the 
binding site of Psb34.

Fig. 10  2D analysis of membrane proteins from ∆CP43 and 
∆CP43/∆Psb34 strains exposed to HL for 24 h (a) and their growth 
in comparison with the CP47-less strain (b). a Membranes isolated 
from the strains were analysed using 2D-CN/SDS-PAGE. After the 
first dimension, the gel was photographed (1D color) and scanned for 
Chl fluorescence (1D fluor). After separation in the second dimen-
sion, the 2D gel was stained with SYPRO Orange (2D SYPRO stain) 
and blotted onto a PVDF membrane (2D blots), and HliA/B and 
CP47 were detected with specific antibodies. Designation of com-
plexes is described in Fig.  2. Each loaded sample contained 3.5  µg 
of Chl. b Cells of ΔCP47, ΔCP43 and ΔCP43/ΔPsb34 were spotted 
on the agar plates containing BG-11, 10 mM TES/NaOH, pH 8.0 and 
5 mM glucose and grown in the dark and under LL, NL and HL for 
8 days
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Similar to His-tagged HliA/B preparations, FLAG-Psb34 
also co-isolated with Psb27 and Psb28 assembly factors 
(Konert et al. 2021), suggesting the involvement of Psb34 
and HliA/B in PSII biogenesis. Conversely, in FLAG-Psb34, 
we identified OEE proteins PsbO and PsbV, while the His-
HliA/B preparations were free of these proteins (Konert 
et al. 2021). This suggests that final conversion of assembly 
intermediates into the functional PSII complexes requires 
the removal of Hlips and Psb34 may play an important role 
in this process. In T. elongatus, deletion of the psbJ gene 
leads to a massive accumulation of an intermediate mono-
meric PSII complex containing the assembly factors Psb27, 
Psb28 and Tsl0063 (Zabret et al. 2021). Thus, this charac-
terized complex also seems to be an assembly intermediate 
preceding PsbJ attachment and its associated activation of 
the PSII acceptor side during late stage of PSII biogenesis.

The distinct kinetics of HliA and HliB accumulation and 
their different distribution among PSII complexes during 
24-h HL exposure suggest that they are not redundant inter-
changeable copies, rather each has its specific role during 
HL acclimation. Analyses of WT, HliA-less and HliB-less 
cells showed that after 24-h HL treatment, the level of HliB 
in PSII(1), RC47, CP47m and in the unassembled fraction 
markedly decreases (Figs. 7 and S5a). In contrast, HliA 
is more stably maintained during the whole 24-h period, 
although it is mainly present in PSII(1), RC47 and the unas-
sembled fraction while its content in CP47m remains low 
(Fig. S5a). This is consistent with previous data showing 
limited binding of HliA to CP47m in the strain expressing 
His-tagged HliB (Komenda and Sobotka 2016) and with the 
low amount of CP47m co-isolated with His-HliA (Konert 
et al. 2021). Upon a sudden increase in irradiance, the imme-
diate photoprotection of the newly made CP47 module might 
be crucial before Chl biosynthesis becomes attenuated and 
de novo Chl-dependent synthesis of CP47 is inhibited (Hol-
lingshead et al. 2016). In this moment, the association of 
HliB with CP47m is essential for sustaining de novo biogen-
esis of PSII complexes that replace the extensively damaged 
ones. Later, when other acclimation mechanisms like the 
accumulation of xanthophylls and specific lipids (Zakar et al. 
2017) or an increase in the level of FtsH proteases for faster 
PSII repair (Kopečná et al. 2012) are effectively induced, 
CP47m formation is less endangered and the presence of 
HliA is sufficient. Given the preference of HliA for PSII(1) 
and RC47, which are transiently formed during PSII repair 
(Komenda and Masojídek 1995; for reviews see Komenda 
et al. 2012a, b; Theis and Schroda 2016), HliA may be 
more specifically involved in PSII repair. In the CP43-less 
strain with extremely fast turnover of D1 (Komenda et al. 
2006), HliA/B are present even without being exposed to 

stress conditions, but their level is surprisingly suppressed 
when the strain is subjected to excess light (Fig. 9). How-
ever, their low level might be partly related to the overall 
decreased RC47 content, which is most probably caused by 
the extremely fast photodamage resulting from the absence 
of electron donation from OEC.

Additional differences in the distribution of HliA and 
HliB among PSII complexes were induced by the removal of 
Psb34. The main difference was observed in ∆HliA/∆Psb34, 
in which HliB still accumulated in PSII complexes after 
24 h of high light (Fig. S5b) although it was almost absent 
in the single ∆HliA mutant (Fig. S5a). This suggests that 
Psb34 preferentially regulates HliB binding to PSII assembly 
intermediates, while HliA seems to be more independent. 
Likewise, Psb34 maintained a stable level in PSII(1), inde-
pendent of the amount of HliA, in the strain lacking HliB 
during high-light treatment, lending further support to the 
inverse relationship between Psb34 and HliB (Fig. S5b). The 
absence of Psb34 in the CP43 null mutants also resulted in 
the overaccumulation of HliA/B in the RC47 complex and 
again more HliB than HliA appeared in the double mutant 
(Fig. 9).

An interesting difference between Psb34 and HliA/B is 
that the former does not interact/co-isolate with CP47m. 
This is rather puzzling when we take into consideration that 
the N-terminal amino acid residues involved in the inter-
action with CP47, PsbL and PsbH (Xiao et al. 2021) are 
conserved between Psb34 and HliA/B (Fig. S2). Although 
we expect that binding of HliA/B to CP47 is very similar 
to that observed for the T. elongatus homologue Tsl0063 
(Zabret et al. 2021; Xiao et al. 2021), one factor possibly 
contributing to the stability of HliA/B binding to CP47m 
is their formation of a heterodimer with another member 
of the Hlip family, HliC (Konert et al. 2021). The contrast 
between HliA/B, which is able to stably bind CP47m, and 
Psb34, which is unable to do so, indicates that another func-
tion of Psb34 may be to limit binding of HliA/B to RC47 
and PSII(1) at the initial stage of HL exposure, allowing 
for sufficient binding of HliA/B to CP47m. This proposal 
is also supported by the results of 2D analyses of proteins 
from radioactively labelled and HL-treated WT and ∆Psb34 
cells (Figs. 6 and 8). The mutant contains more labelled 
HliA/B in PSII(1) and especially in RC47 than WT, while 
the intensity of HliA/B labelling in CP47m is higher in WT 
(Fig. 6). Upon association of the CP47 module contain-
ing HliA/B with the D1/D2 RCII complex, Psb34 possibly 
replaces some HliA/B and allows their recycling and bind-
ing to CP47m for its sufficient photoprotection (for model 
see Fig. 11).
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