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Abstract: The species Zanthoxylum caribaeum belongs to the Rutaceae family, from which several
chemical nuclei are known, including alkaloids and coumarins. In addition, its essential oil has been
characterized, showing differences in composition and various antimicrobial activities. In the present
study, the essential oil of Z. caribaeum collected in the department of Tolima, central Colombia, was
characterized by gas chromatography with mass selective detector (GC-MS). The essential oil showed
a composition of about 43 compounds (including major and minor), whose main components, ac-
cording to their abundance, are the following: germacrene D (228.0 ± 1.6 mg/g EO), (E)-β-farnesene
(128.0 ± 1.5 mg/g EO), β-elemene (116.0 ± 1.6 mg/g EO) and (E)-nerolidol (74.0 ± 2.2 mg/g EO).
This oil was tested against microorganisms that affect cocoa production in Colombia and in tropical
countries where the production of this commodity is very important for the economy. The antifungal
tests were performed on the fungal species Moniliophthora roreri and showed promising and significant
activity, inhibiting growth by more than 95% at concentrations of 50 µL/mL and 100 µL/mL. This
remarkable antifungal activity could be due to the presence of major and minor compounds that
synergistically enhance the activity.
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1. Introduction

The genus Zanthoxylum belongs to the Rutaceae family. Worldwide, 250 species have
been described, distributed mainly in the tropical and subtropical zones of the planet [1].
In Colombia, it is mainly found in the Andean region, the Caribbean and part of the
Amazon [2]. Some species belonging to these genera have shown a variety of biological
activities such due to their high content of secondary metabolites including alkaloids,
terpenes, lignans, steroids, coumarins and flavonoids, such as anti-inflammatory, anticancer,
antimalarial, antioxidant, anti-HIV and antimicrobial activities [3–8]. These metabolites
are distributed throughout the plant but have been found in higher concentrations in bark,
roots and leaves.

One of the plants that is cultivated annually in Colombia is Theobroma cacao (cocoa), an
ancient plant of the American continent [9,10] that has acquired great cultural, environmen-
tal and economic importance. It belongs to the family Malvaceae, which includes more than
22 species, and is divided into criollo, forastero and trinitario cocoa with different physical,
chemical and functional properties. The dried beans are obtained from the fruits, and their
aromatic and compositional quality is determined by factors such as origin, processing
and the influence of soil and climatic conditions [11,12]. According to some studies, cocoa
originated in the headwaters of the Amazon basin, and a natural cocoa population spread
westward and northward in the central part of the Amazon-Guayana region, forming the
Forastero-Amazon group and the second group, called Criollo, which is well accepted in
the market due to its high organoleptic qualities [13]. Currently, this tree is commercially
grown in Asia and Oceania, Central and South America and Africa, with a global share
of production of 12.5%, 12.7% and 74.8%, respectively. Most cocoa for international trade
is grown in Africa, with Côte d’Ivoire being the largest producer and cocoa from Ghana
being the highest quality [14].

Phytosanitary problems are the main factors that have contributed to the decline
in cocoa production and the deterioration of quality of the final product. These include
diseases caused by phytopathogenic fungi [15]. This problem has increased recently,
favored by the lack of proper cultivation management and by man-made environmental
changes [16]. The main diseases affecting the cocoa plant in Colombia include: Moniliasis,
a disease caused by the basidiomycete fungus Moniliophthora roreri (Figure 1), which affects
about 40% of the annual cocoa production in Colombia, with a total production of 62,000 MT
averaged over the last 5 years [17,18]. It has high survivability in different environments,
with rapid growth and spread, in general, commercial genotypes are highly susceptible
to this pathogen [19] and current disease control methods are inefficient and increase
production costs [20]. This situation threatens the sustainability of national production of
this crop. Some phytosanitary conditions related to the agro-ecological zone, the severity of
the inoculum and inadequate crop management favor damage up to 100% in a plantation,
which is why the disease is considered the most prevalent and severe.
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Essential oils (EOs) have a natural potential for plant defense mechanisms, are volatile
compounds produced by many species, and can act against various plant pathogenic
microorganisms [5]. Their use is emerging as a sustainable alternative for disease control
in today’s agriculture, where agricultural practices allow the use of certain substances
to combat pathogens [6]. Natural products such as essential oils have emerged as an
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“environmentally friendly” alternative for use as effective as antimicrobial agents because
they are easy to obtain and have low toxicity to non-target organisms. In this study we
isolated the fungus M. roreri, causal agent of Moniliasis disease in cocoa plantations in
Colombia and tropical countries. The microorganism was cultured, and biological assays
were developed using essential oils extracted from the leaves of Z. caribaeum as active
principle, obtaining promising results for the development of bioproducts.

2. Materials and Methods
2.1. Plant Material

The species Z. caribaeum was collected in January 2022 in the municipality of Piedra,
Department of Tolima-Colombia (4◦28′57′′ N 74◦59′17′′ W, altitude 593 masl), the species
were collected by Andrea Jiménez-González, Marcial Fuentes-Estrada and Olimpo García-
Beltrán, and identified and classified by botanist Héctor Esquivel and a specimen in the
TOLI Herbarium of the Universidad del Tolima (Colombia) with voucher number N◦ 28543.

2.2. Extraction of Essential Oil

Z. caribaeum leaf samples were pre-cleaned. The essential oils of Z. caribaeum were
extracted from the leaves using a microwave-assisted hydrodistillation (MWHD) system
as the extraction method [21]. The heating source for the system was a conventional
microwave radiation source (SAMSUNG, model MS23J5133AG, Malaysia), set at 2450 MHz,
1.2 kW. 750 g of plant material was mixed with 500 mL of distilled water, plant material,
especially the leaves, were placed in a 2 L reaction balloon. Then, a heating program was
carried out; the first stage was 10 min at 100% power for preheating; the second stage
of 45 min distillation at 80% power. A maximum condensation temperature of 13 ◦C
was maintained.

2.3. Chromatographic Analysis

The extracted essential oil of Z. caribaeum (20 mg) was dissolved in CH2Cl2 (1 mL),
and an aliquot of this dilution (2 µL) was injected into a gas chromatograph coupled to a
mass-selective detector and a flame detection system.

The analysis was performed with a gas chromatograph, GC 6890 Plus (Agilent Tech-
nologies, AT, Palo Alto, CA, USA), equipped with a mass-selective detector MS 5973
Network (AT, Palo Alto, CA, USA) using electron ionization (EI, 70 eV). Helium (99.995%,
AP gas, Messer, Bogotá, Colombia) was used as the carrier gas, with an initial inlet pressure
at the column head of 113.5 kPa; the volumetric flow rate of the carrier gas was kept
constant (1 mL/min) during the chromatographic run. The injection mode was split (30:1)
and the temperature of the injector was maintained at 250 ◦C.

Compounds were separated on two capillary columns, one containing the polar
stationary phase of poly (ethylene glycol), PEG (DB-WAX, J & W Scientific, Folsom, CA,
USA) of 60 m × 0.25 mm (i.d.) × 0.25 µm (df) of 60 m × 0.25 mm (i.d.) × 0.25 µm (df)
and the other with the stationary phase (s.f.) apolar 5%-phenyl-poly(methylsiloxane),
5%-Ph-PDMS (DB-5MS, J & W Scientific, Folsom, CA, USA) with the same dimensions. On
the polar column (DB-WAX), the oven temperature was programmed from 50 ◦C (5 min)
to 150 ◦C (7 min), at 4 ◦C/min, and then to 230 ◦C (50 min), at 4 ◦C/min. Same conditions
was used for the analysis via flame detection system (GC/FID). On the apolar column
(DB-5MS), the chromatographic oven temperature was programmed from 45 ◦C (5 min)
to 150 ◦C (2 min) at 4 ◦C/min, and then to 300 ◦C (10 min) at 5 ◦C/min. The GC/MS
transfer line temperature was set to 230 ◦C when using the polar column and 300 ◦C for the
nonpolar column. The ionization chamber and quadrupole temperatures were 250 ◦C and
150 ◦C, respectively. The mass range for ion current acquisition was m/z 45–450 u, with
an acquisition rate of 3.58 scan/s. Data were processed using MSDChemStation G1701DA
software (AT, Palo Alto, CA, USA). Integration parameters were as follows: threshold = 18
and “rejection area” of the peak above baseline less than 1%. Compounds were identified
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based on linear retention indices (LRI) and comparison of experimentally obtained mass
spectra with those reported in Adams 2007, NIST 2017 and Wiley 2008 databases.

LRI = (100 × n) + 100 ×
[

tRx − tRn

tRN −tRn

]
(1)

where: n is the number of carbon atoms in the n-paraffin eluting before the compound of
interest (its retention time is tRx); tRn and tRN are the retention times of the n-paraffins with
the number of carbon atoms n and N, respectively, eluting immediately before and after
the analyte of interest.

Compound quantification was performed with the external standardization by GC/FID.
Standard substances were analyzed under the same chromatographic conditions as the
Z. caribeum EO. In the case for which a reference substance was not available, quantification
was performed using the calibration curve obtained for a structurally similar molecule.

2.4. Antimicrobial Activity

In vitro antimicrobial activity was performed against the fungus M. roreri, which
affects cocoa kernel production in cocoa-producing countries.

2.4.1. Isolation of Moniliophthora roreri

In order to obtain the inoculum of M. roreri, infested fruits with early symptoms and
signs of the formation of a dark brown spot with mycelium on the shell of the cocoa kernel
(fruits) must be collected in the field.

The harvested fruits were washed and disinfected with hypochlorite 1% for
two minutes. Then, they were rinsed with distilled water and dried with sterile absorbent
paper. The disinfected fruits were then segmented into 5 mm diameter portions (endoder-
mal tissue) in a laminar flow chamber, and the tissue segments infested with M. roreri were
placed in Petri dishes containing potato dextrose agar (PDA) culture medium to incubate
at 25 ◦C until fungal growth appeared in the samples to identify them by their macroscopic
and microscopic characteristics, which was repeated until pure cultures were obtained.

2.4.2. Antifungal Activity against Moniliophthora roreri

In vitro assay of antifungal activity of Z. caribaaeum essential oils on M. roreri was
performed under controlled conditions using the poisoning technique [22,23], the concen-
trations evaluated in the test were 5 µL, 10 µL, 50 µL, 100 µL and 495 µL and tests were
performed in triplicate. After the preparation of the poisoned medium, mycelial discs with
a diameter of 5 mm from pure cultures grown for 7 to 10 days were sown in the center of
the boxes containing the treatments. Slices of the pathogen on PDA agar medium without
essential oils were used as a negative control. Copper oxychloride (Cu2(OH)3Cl), a com-
mercial fungicide with known activity on M. roreri was used as the positive control. Petri
dishes were incubated at 25 ◦C. The plates were daily evaluated by measuring their radial
growth in cm (Roque et al., 2001). The measurement was completed when the mycelium of
the pathogen completely covered the negative control plate.

The inhibition mycelial growth of the pathogen is calculated as the percentage of
radial growth relative to the control (Equation (2)).

% Inhibition =
(NCD− TD)

NCD
× 100 (2)

where: NCD = Negative control diameter, TD = Treatment diameter.
The measurement shall be concluded when the pathogen’s mycelium completely

covers the control treatment plate. The evaluation of the efficacy of the product shall be
expressed as a percentage inhibition of mycelial growth.
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2.5. Statistical Analysis

Statistical analysis was performed using a single factor experimental design with
the software IBM SPSS version 25.0 [24–26]. This analysis was applied to the in vitro
biometric measurement data obtained from the application of Z. caribaeum essential oil,
with 5 treatments (in triplicate) corresponding to the established dosages of 5 µL (T1),
10 µL (T2), 50 µL (T3), 100 µL (T4) and 495 µL (T5). In addition, 2 control treatments were
performed; M. roreri on PDA, treatment 6 is PDA only (T6) and a commercial fungicide,
phosphorus oxychloride (Cu2(OH)3Cl) as treatment 7 (T7).

To demonstrate the normality, the Shapiro–Wilk (S-W) test [27] was applied (p-value
(S-W test) > 0.05). In addition, Levene’s test for homogeneity of variances was applied
to detect equality or difference between at least one pair of means of the treatments, and
thus ANOVA of a single factor was used to test the specific differences between treatments
by means of Post hoc tests (DSM or T2-Tamhane) accepting significant differences with a
p-value < 0.05 [28,29].

3. Results and Discussion

The essential oil of Z. caribaeum consisted of 43 compounds, mainly sesquiterpenes
(67%), monoterpenes (18%), in addition, three unidentified compounds with m/z 152
(C15H16O), 204 (C15H24) and 220 (C15H24O). However, in this work, we highlight six main
compounds that have a proportion higher than 5%, including three sesquiterpenes, ger-
macrene D (228.0 ± 1.6 mg/g EO), (E)-β-farnesene (128.0 ± 1.5 mg/g EO), β-elemene
(116.0 ± 1.6 mg/g EO), one monoterpene, limonene (73.0 ± 1.9 mg/g EO) and one oxy-
genated monoterpene, (E)-nerolidol (74.0 ± 2.2 mg/g EO). (Table 1, Figure 2). Comparing
the composition and abundance of essential oil metabolites in this study with those reported
in the literature [30–32], it was clear that the concentration of germacrene D in essential oil
of Z. caribaeum was higher in the individuals used in this study.
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In order to obtain reliable and verified data, two chromatographic studies were per-
formed using two capillary columns, the first with a DB-5MS is apolar phenyl arylene poly-
mer column with 5% phenyl-poly(methylsiloxane) stationary phase, this type of column
has excellent performance with its signal/noise ratio, very important for the development
of analytical applications, in addition, it shows high sensitivity and mass spectral integrity.
The second with a DB-WAX high-polar column with poly (ethylene glycol) stationary phase,
the use of this column allows it to be used in food, fragrance and flavor applications. Its use
at low temperatures shows excellent resolution of low boiling point active ingredients. The
chromatograms obtained from both columns showed the same components with different
rates, and the experimental values differed from those reported in the literature (Table 1;
Figure 3).
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Table 1. Chemical characterization via GC/FID and GC/MS of the essential oil distilled from
Z. caribeum.

Peak N◦ Compound
Linear Retention Indices

% Area,
GC-FID
DB-5MS

mg Compound/g
EO, Value ± sx

kDB-5 (Non-Polar) DB-WAX (Polar)
Exp. Lit. Exp. Lit.

1 (Z)-Hex-3-en-1-ol a,b,d 855 856 [33] 1383 1380 [33] 0.3 3.7 ± 0.12
2 (E)-Hex-2-en-1-ol a,b,d 865 864 [33] 1404 1399 [33] 0.2 2.9 ± 0.13
3 Hexan-1-ol a,b,d 869 869 [33] 1351 1351 [33] 0.3 3.2 ± 0.13
4 α-Thujene a,b,e 926 927 [33] 1022 1026 [33] 0.2 1.64 ± 0.09
5 α-Pinene a,b,c 934 936 [33] 1017 1025 [33] 0.2 2.1 ± 0.10
6 Sabinene a,b,c 974 973 [33] 1118 1122 [33] 0.3 3.54 ± 0.08
7 β-Myrcene a,b,c 989 988 [34] 1162 1160 [33] 2.2 32 ± 2.40
8 α-Terpinene a,b,c 1018 1017 [33] 1177 1177 [33] 0.3 3.3 ± 0.15
9 p-Cymene a,b,c 1026 1024 [33] 1270 1270 [33] 1.5 13.6 ± 0.27
10 Limonene a,b,c 1032 1029 [33] 1199 1198 [33] 9.3 73 ± 1.9
11 β-Phellandrene a,b,f 1034 1030 [33] 1207 1209 [33] 1.4 14.0 ± 0.17
12 (E)- β-Ocimene a,b,g 1047 1047 [33] 1251 1250 [33] 1.2 17 ± 2.5
13 γ-Terpinene a,b,c 1060 1059 [35] 1244 1245 [33] 1.4 13.9 ± 0.13
14 Linalool a,b,c 1100 1099 [33] 1546 1543 [33] 0.6 6.01 ± 0.07
15 4,8-Dimethyl-1,3,7-nonatriene a,b,g 1113 1116 [AA] 1306 1306 [AA] 0.2 2.33 ± 0.08
16 Terpinen-4-ol a,b,c,h 1185 1177 [AA] 1605 1601 [33] 0.2 2.39 ± 0.07
17 N.I. M+• m/z 152 (C15H16O) a,b,h 1201 - - 0.3 3.19 ± 0.07

18
(E,E)-2,6-Dimethyl-3,5,7-octatriene-

2-ol a,b,h 1209 1209 [AA] 1820 1830 [AA] 1.4 14.73 ± 0.09

19 (Z)-Ocimenone a,b,h 1233 1226 [34] 1698 1697 [AA] 0.5 5.58 ± 0.07
20 (E)-Ocimenone a,b,h 1241 1235 [34] 1718 1718 [AA] 0.3 3.62 ± 0.07
21 α-Cubebene a,b,i 1349 1351 [33] 1459 1460 [33] 0.7 7 ± 1.4
22 α-Copaene a,b,i 1380 1376 [33] 1495 1491 [33] 3.0 27 ± 1.5
23 N.I. M+• m/z 204 (C15H24) a,b,i 1385 - 1581 - 0.6 6 ± 1.4
24 β-Elemene a,b,i 1395 1390 [33] 1594 1590 [33] 13.4 116 ± 1.6
25 β-Ylangene a,b,i 1426 1421 [33] 1577 1576 [33] 0.7 7 ± 1.4
26 (E)-β-Caryophyllene a,b,c 1429 1420 [33] 1601 1598 [33] 0.3 3.26 ± 0.08
27 (E)-α-Bergamotene a,b,i 1438 1434 [33] 1587 1579 [AA] 1.3 12 ± 1.5
28 (E)-β-Farnesene a,b,i 1457 1455 [33] 1669 1663 [33] 14.8 128 ± 1.5
29 α-Humulene a,b,c,i 1465 1453 [33] 1674 1666 [33] 0.3 2.81 ± 0.08
30 Alloaromadendrene a,b,i 1469 1460 [AA] 1649 1649 [33] 0.2 1.70 ± 0.08
31 Germacrene D a,b,c,i 1492 1480 [33] 1718 1710 [33] 26.4 228 ± 1.6
32 Bicyclogermacrene a,b,i 1504 1499 [34] 1737 1734 [33] 3.3 29 ± 1.4
33 Cubebol a,b,j 1524 1514 [34] 1941 1941 [33] 1.6 24 ± 2.3
34 δ-Cadinene a,b,i 1524 1523 [33] 1758 1755 [33] 2.3 21 ± 1.5
35 Elemol a,b,j 1554 1547 [34] 2078 2078 [33] 0.4 4.37 ± 0.07
36 (E)-Nerolidol a,b,c,j 1564 1560 [33] 2040 2036 [33] 6.2 74 ± 2.2
37 Spathulenol a,b,j 1585 1576 [33] 2122 2126 [33] 0.3 3.01 ± 0.06
38 Germacrene D-4-ol a,b,j 1585 1574 [33] 2049 2056 [33] 0.6 7.21 ± 0.07
39 (E)-Sesquisabinene hydrate a,b,j 1585 1583 [33] 2084 2092 [33] 0.5 5.42 ± 0.07
40 Ledola,b,j 1615 1601 [34] 2029 2039 [33] 0.2 1.89 ± 0.07
41 N.I. M+• m/z 220 (C15H24O) a,b,j 1649 - - - 0.6 6.67 ± 0.08
42 α-Cadinol 1664 1652 [34] 2229 2227 [33] 0.1 1.66 ± 0.07
43 Phytol a,b,i 2107 2102 [36] - 2613 [33] 0.1 1.42 ± 0.08

a Tentative identification based on linear retention indices measured using DB5 (non-polar) and DB-WAX (polar)
columns [33–36]. b Tentative identification based on mass spectra (MS; electron ionization, 70 eV, >95% coinci-
dence), study of fragmentation patterns and comparison with MS espectra from NIST (2017), Adams (2007) [34],
and Wiley (2008) [37] espectral databases. c Confirmatory identification based on standard substances by com-
parison of their mass spectra and retention times (tR) with those of the EO components. N.I. not identified.
d Quantification in oct-1-en-3-ol equivalents. e quantification in α-pinene equivalents. f quantification in
α-terpinene equivalents. g quantification in β-myrcene equivalents. h quantification in linalool equivalents.
i quantification in (E)-β-caryophyllene equivalents. j quantification in (Z)-nerolidol equivalents, see calibration
curve (Supplementary Material Table S1). k Sx, standard deviation calculated for n = 3 using residual standard
error in the calibration.
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Inhibition of mycelial growth was determined macroscopically by placing a fragment
of the fungal colony in a Petri dish containing PDA supplemented with different dilutions
of essential oil (5, 10, 50, 50, 100 to 496 µL/mL), negative control (PDA without treatment)
and positive control (copper oxychloride); each test was performed in triplicate. Mycelial
growth was determined by measuring colony diameter (cm) for 7 days, and its inhibition
percentage was determined (Table 2). When calculating the percentage of inhibition, it is
evident that the essential oil of Z. caribaeum is active; it presents a high inhibition of the
growth of M. roreri at low concentrations of 10 µL/mL, which inhibits 88.3%. The concen-
tration/percentage of inhibition relationship is notorious, observing a proportionality with
the increase in the concentration to 50 µL/mL, determining that an inhibition of 96% of
the fungus growth was reached. This determines that concentrations ranging between
10–50 µL/mL are promising for future development of bioproducts involving essential oils
with comparable chemical profile.

Table 2. Shapiro–Wilk normality test and percentage inhibition values per treatment.

Treatments % Inhibition GR * (cm/día)
Shapiro–Wilk

¯
x gl Sig.

T1 (5 µL/mL) 28.27 0.75 1.76 3 0.342

T2 (10 µL/mL) 88.29 0.25 0.97 3 0.917

T3 (50 µL/mL) 95.99 0.05 0.20 3 0.391

T4 (100 µL/mL) 98.96 0.033 0.04 3 0.000

T5 (496 µL/mL) 100.00 0.00 0.00 3 0.000

T6 (Control −) PDA 0.00 0.83 2.63 3 0.000

T7 (Control +)
copper oxychloride (Cu2(OH)3Cl) 100.00 0.00 0.00 3 0.000

* Growth Rate per day; T1–T7 = Treatments; x = Mean; gl = Reproducibility; Sig. = p-value < 0.05.
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The statistical test performed shows that the data are normal (Supplementary Material
Figure S1), determined by the p-value being greater than 0.05, therefore the null hypothesis
is rejected [38]. With the exception of treatment T5 and T7 (0.000), but it is accepted that the
behavior is obtained normal for the other data. To choose the best treatment, a multiple
comparison between treatments was performed, for which the Tamhane test was used
(Supplementary Material Table S2), because the analyzed data did not show homogeneity
between variances. This showed that T5 has significant differences compared to the other
treatments, this would be the one with the highest degree of inhibition, since it produces
an average diameter growth of 0.04667 cm less than T4, the latter being the second-best
treatment in terms of inhibition of the phytopathogen. As for the other treatments that
showed significant differences, T6 and T7 were considered as control treatments (Table 2).
The antifungal assays showed inhibition of M. roreri growth by the T2 treatment (10 µL/mL);
however, the activity of the essential oils was more stable in the T4 treatment (100 µL/mL)
over the study period (7 days) (Figure 4).
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Figure 4. Comparative boxplot of biometric growth at day 7 between treatments evaluated against
M. roreri.

The main compounds of Z. caribaeum are germacrene D, (E)-β-farnesene, (E)-nerolidol
and bicyclogermacrene. However, it should be noted that the compounds (E)-β-farnesene,
(E)-nerolidol and bicyclogermacrene are components of essential oils that exhibit antimicro-
bial activity, but no such activity can be attributed to them [39]. Studies have evaluated
the inhibitory effect of the essential oil (EO) of Z. armatum on the filamentous fungus
Aspergillus flavus. The essential oil showed a chemical composition where its major
compounds were linalool (41.73%), D-limonene (13.24%), β-phellandrene (7.53%), trans-
nerolidol (6.30%) and terpinen-4-ol (5.33%). When the oil was evaluated, it showed a
decrease in the radial growth of A. flavus and also when a microscopic study was carried
out, the mycelium was observed to be considerably reduced, as well as the number of
colonies at room temperature [40]. In contrast, the high concentration of germacrene D is
remarkable, and it should be noted that there is a direct relationship between the presence
of this substance and antifungal activity. Several studies have shown antifungal activity on
different groups of fungi. An example of this is the germacrene-rich essential oils extracted
from species such as Artemisia campestris, which have shown in vitro antifungal activity
against Fusarium graminearum, which attacks crops such as rice, oats and corn [40]. It
has also been shown to inhibit the growth of plant pathogenic fungi, including a number
of Fusarium species, Botrytis cinerea and Alternaria solani [41–43]. In Glechon species, the
antifungal capacity against fungi of human interest such as Candida has been noted, and
the extracted oil has in common that germacrene D is one of its main components [44]. In
Buddleja perfoliata and Pelargonium graveolens species, the extracted essential oil showed an-
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tifungal activity against various fungi affecting the postharvest of the plants. In particular,
this oil showed broad activity against strains of Aspergillus amylovorus, A. flavus, A nomius,
A ostianus, Eurotium halophilicum, Eupenicillum hirayamae, Penicillium cinnamopurpureum and
P. viridicatum var. ii [45].

4. Conclusions

In the essential oil of Z. caribaeum, the main compounds were identified, mainly
molecules of germacrene D (228.0 ± 1.6 mg/g EO), (E)-β-farnesene (128.0 ± 1.5 mg/g EO),
β-elemene (116.0 ± 1.6 mg/g EO) and (E)-nerolidol (74.0 ± 2.2 mg/g EO) were found in
its chemical composition. The essential oil was tested against the basidiomycete M. roreri,
a fungus that affects cocoa production worldwide and therefore has a particular impact
on family economy. The results show a promising potential of this oil at concentrations
between 50 µL/mL and 100 µL/mL, where it showed an inhibition percentage of 96% and
99%, respectively, sufficient concentrations to keep the growth of the fungus under control.
In addition, it should be noted that, although four main compounds were found, germa-
crene D is the substance attributed with 26.4% antifungal activity based on the background
shown. The other three compounds were found in oils showing antimicrobial activity;
however, their concentrations are not appreciable, but it can be speculated that their com-
bined effect enhances the antimicrobial activity. This is a step towards the development of
bioproducts for sustainable phytosanitary control of microorganisms infesting cocoa crops.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/chemosensors11080447/s1, Table S1: Calibration curves
for compound quantification in Z. caribaeum essential oil; Table S2: Descriptive analysis of the growth
of M. roreri in the different concentrations of essential oil of Z. caribaeum; Figure S1: Normal Q-Q
diagram of the mean growth diameter of M. roreri treated with essential oils of Z. caribaeum.
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