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Abstract

Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent

antifungal activities. These cyclic lipopeptides have an amphipathic structure com-

prised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have anti-

biotic activity against a range of human and plant fungal pathogens. This review

article aims to summarize the present knowledge on the chemical diversity and cellu-

lar effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic

antifungal lipopeptides from cyanobacteria commonly fall into four structural classes;

hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these anti-

fungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disrup-

tion of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in

human cells, and a more extensive examination of their biological activity and

structure–activity relationship is warranted. The hassallidin, puwainaphycin,

laxaphycin, and anabaenolysin structural classes are unified through shared complex

biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms

and branched biosynthesis that promote their chemical diversity. However, the bio-

synthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms,

which drive their structural diversification in general, remain poorly understood. The

strong functional convergence of differently organized chemical structures suggests

that the production of lipopeptide confers benefits for their producer. Whether these

benefits originate from their antifungal activity or some other physiological function

remains to be answered in the future. However, it is clear that cyanobacteria encode

a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic

applications.

1 | INTRODUCTION

Cyclic lipopeptides with long fatty acid side chains are a common

group of natural products synthesized by a range of bacterial genera

(Arima et al., 1968; Cochrane & Vederas, 2016). Cyclic lipopeptides

typically possess fatty acids with β-hydroxy or β-amino residues and

form macrolactone and macrolactam rings (Figure 1). These com-

pounds have received considerable attention for their often potent

antagonistic activity against a range of human and plant pathogenic

organisms (Ongena & Jacques, 2008). Cyclic lipopeptides include

membrane-active compounds, such as surfactin, fengycin, iturins, and

daptomycins, some of which find use as surfactants, antifungal agents,

Received: 15 January 2021 Revised: 7 June 2021 Accepted: 16 June 2021

DOI: 10.1111/ppl.13484

Physiologia Plantarum

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

Physiologia Plantarum. 2021;1–12. wileyonlinelibrary.com/journal/ppl 1

https://orcid.org/0000-0003-3978-4845
https://orcid.org/0000-0003-2558-0091
https://orcid.org/0000-0001-7660-8678
https://orcid.org/0000-0002-3521-7870
https://orcid.org/0000-0002-2061-0266
https://orcid.org/0000-0003-0353-3614
mailto:david.fewer@helsinki.fi
mailto:hrouzek@alga.cz
mailto:lars.herfindal@uib.no
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/ppl


or antibiotics (Arima et al., 1968; Taylor & Palmer, 2016). Their com-

plex chemical structure makes their physico-chemical properties more

diverse compared to other cyclic peptides, and they are therefore

likely to have unique properties and bioactivities. Cyclic lipopeptides

can harbor different bioactivities towards prokaryotic and eukaryotic

cells (Minagawa et al., 2011; Shishido, Humisto, et al., 2015). The dif-

fering specificities can be mostly ascribed to the amphipathic molecu-

lar nature of many cyclic lipopeptides (Ongena & Jacques, 2008). This

promotes integration into membranes in the target organisms but can

also favor interaction with lipid-associated structures, enzymes, or

other proteins that have amphiphilic substrates. Such cyclic

lipopeptides are also used for biotechnological applications, for

instance, as biocontrol agents in plant diseases due to their antagonis-

tic activity against a wide range of potential phytopathogens (Malviya

et al., 2020; Ongena & Jacques, 2008). Cyanobacteria are an emerging

source of structurally diverse cyclic lipopeptides (Dittmann et al.,

2015; Demay et al., 2019; Jones et al., 2021; Niedermeyer, 2015;

Shishido, Humisto, et al., 2015), some of which have already been

tested in disease models and show promise as drug candidates. How-

ever, there is a need for deeper knowledge on how cyclic lipopeptides

affect biological processes and structure–activity relationship studies

to be able to identify possible drug leads and new fields for

applications. Furthermore, due to their complex chemical structure,

understanding their biosynthesis might aid us in generating variants

that have improved activities. In this review article, we present the

current knowledge on the structural diversity, biosynthesis, and bioac-

tivities of cyclic antifungal lipopeptides from cyanobacteria, to high-

light their potential beneficial use in pharmaceutical and

biotechnological applications.

2 | CHEMICAL STRUCTURE AND
BIOSYNTHESIS OF CYANOBACTERIAL
LIPOPEPTIDES

The chemical structure of cyanobacterial lipopeptides follows the

chemical structures found in other prokaryotic lineages. Linear

lipopeptides, cyclic lipopeptides, and cyclic lipopeptides with

linear exocyclic amino-acid moieties have been reported from cyano-

bacteria, as exemplified by jahanyne (Iwasaki et al., 2015), laxaphycin

(Frankmölle, Knubel, et al., 1992), and hassallidin (Vestola et al., 2014),

respectively. The fatty acyl moiety is typically connected to a peptide

backbone via a peptide bond in both linear and cyclic lipopeptides

with exocyclic peptide moieties (see the schematic depiction in

Figure 1). In many cyclic lipopeptides, the fatty acid residue is interca-

lated directly into the peptide macrocycle (Frankmölle, Knubel,

et al., 1992; Hrouzek et al., 2012; Vestola et al., 2014). This can hap-

pen via two peptide bonds if the fatty acid residue is functionalized by

an amino group, typically at the β carbon of the fatty acid, or by a pep-

tide and an ester bond in cases where the fatty acid residue is

functionalized by a hydroxyl group instead (Figure 1). Cyclic

lipopeptides with fatty acid intercalated in the peptide cycle are com-

monly reported to possess antifungal properties (Demay et al., 2019;

Jones et al., 2021; Niedermeyer, 2015; Shishido, Humisto,

et al., 2015). Anabaenolysins, hassallidins, balticidins, puwainaphycins,

minutissamides, muscotoxins, trichormamides, lobocyclamides,

scytocyclamides, and laxaphycins have proved to possess significant

antifungal effects, usually paired with the cytotoxic activities in human

cells (Frankmölle, Knubel, et al., 1992; Gregson et al., 1992; Jokela

et al., 2012; Neuhof et al., 2005). The structure and the fatty acid moi-

ety of cyanobacterial antifungal cyclic lipopeptides differ substantially.

A fully saturated fatty acid residue can be found in puwainaphycins,

minutissamides, muscotoxins, and laxaphycins (Frankmölle, Knubel,

et al., 1992; Gregson et al., 1992; Neuhof et al., 2005), while a set of

polyunsaturated fatty acid is found in anabaenolysins (Jokela

et al., 2012).

Bacterial cyclic lipopeptides are synthesized through complex sec-

ondary metabolic pathways (Chooi & Tang, 2010; Roongsawang

et al., 2010; Zhong et al., 2021). Fatty acyl chains are the first mono-

mers incorporated into the peptidyl backbone via a process known as

lipoinitiation (Chooi & Tang, 2010; Zhong et al., 2021). The lipid resi-

due can be incorporated in a number of ways (Figure 2, Chooi &

Tang, 2010). The lipopeptides are typically extended through the suc-

cessive additions of both proteinogenic and nonproteinogenic amino

acids by nonribosomal peptide synthetases (NRPSs) (Roongsawang

F IGURE 1 A schematic figure showing generalized chemical
structures for linear and cyclic lipopeptides. The substituent
responsible for cyclization of the intracyclic lipopeptides may be
present in other positions than the β-carbon of the modified fatty acid
residue. AA, amino acid
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F IGURE 2 Biosynthesis of cyanobacterial cyclic lipopeptides that display antifungal activity. (A) Organization of the hassallidin (has),
puwainaphycin (puw), laxaphycin (lxa), and anabaenolysin (abl) biosynthetic gene clusters. (B) Hassallidin, puwainaphycin, laxaphycin, and
anabaenolysin biosynthetic schemes showing variation in the lipoinitiation mechanisms, unusual branched biosynthesis, and tailoring enzymes to
achieve the observed chemical variation. Enzymes involved in fatty acid biosynthesis and modification are highlighted in cyan. A adenylation
domain; AmT, aminotransferase domain; AT, acyltransferase domain; C, condensation domain; DH, dehydratase domain, ER, enoylreductase
domain; E, epimerase domain; FAAL, fatty acyl-AMP ligase; FACL, fatty acyl CoA ligases; FADS, fatty acid desaturase; KR, ketoreductase domain;
KS, ketosynthtase domain; M, methylation domain; Ox, oxidase domain; T, thiolation domain; TE, thioesterase domain
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et al., 2010). NRPSs are multimodular enzymes that catalyze the bio-

synthesis of diverse peptides with a wide variety of activities

(Sieber & Marahiel, 2005). NRPS modules, which typically include a

condensation (C) domain, an adenylation (A) domain, and a thiolation

(T) domain, incorporate a single amino acid into a growing peptide

chain, forming the peptidyl backbone by sequential condensations

(Sieber & Marahiel, 2005). Bacterial lipopeptide biosynthesis may also

involve modular polyketide synthase (PKS) enzymes, which can fur-

ther increase the structural diversity of synthesized products, either

by extending and tailoring the fatty acid chain or by modification of

amino acids incorporated into the macrocycle. The chemical diversity

of such natural products can be further increased through enzymes

that supply dedicated precursor substrates or catalyze tailoring reac-

tions (Fewer & Metsä-Ketelä, 2020). Bacterial lipopeptide biosyn-

thetic pathways are typically organized in self-contained gene clusters

that can be over 100 kb in length and encode over 40 biosynthetic

enzymes (Fewer & Metsä-Ketelä, 2020; Heinilä et al., 2020). Biosyn-

thetic pathways have been characterized for four structural classes of

antifungal cyclic lipopeptides from cyanobacteria; hassallidins,

laxaphycins, puwainaphycins, and anabaenolysins (Figure 2).

3 | HASSALLIDINS AND BALTICIDINS

Hassallidins A–E are cyclic glycosylated lipopeptides produced by a

range of cyanobacteria with a fatty acid chain, a peptide ring of eight

amino acids, an exocyclic amino acid, and 1–3 sugar moieties (Neuhof

et al., 2005; Neuhof, Schmieder, et al., 2006; Pancrace et al., 2017;

Vestola et al., 2014). Hassallidin chemical variants differ considerably

in fatty acid length (C14–C18), as well as in glycosylation of the mole-

cule, which takes place at the Thr residues of the peptide cycle as well

as at the β-hydroxyl residue of the modified fatty acid (Figure 3,

Table S1). Closure of the eight-membered peptide macrocycle via an

ester bond links the exocyclic Thr residue to the fatty acid moiety

(Neuhof et al., 2005). Hassallidins were first reported from a strain of

the genus Hassallia (Neuhof et al., 2005; Neuhof, Schmieder,

et al., 2006). Hassallidins have been subsequently reported from the

genera Anabaena, Aphanizomenon, Cylindrospermopsis, Nostoc,

Planktothrix, and Tolypothrix (Neuhof et al., 2005; Pancrace

et al., 2017; Vestola et al., 2014). Balticidins A–D share near chemical

identity with hassallidins identified from Anabaena cylindrica Bio33

from the Baltic Sea (Bui et al., 2014) and clearly belong to the same

family as hassallidins. Members of the hassallidin family share potent

antifungal activity (Bui et al., 2014; Neuhof et al., 2005; Neuhof,

Schmieder, et al., 2006; Vestola et al., 2014), including antifungal

activity against several opportunistic pathogenic yeasts on humans

(Neuhof et al., 2005; Vestola et al., 2014).

Hassallidins are produced using a complex nonribosomal biosyn-

thetic pathway encoded in 48–59 kb biosynthetic gene clusters

(Pancrace et al., 2017; Vestola et al., 2014). The hassallidin biosyn-

thetic pathway encodes four NRPS proteins (HasO, HasN, HasV, and

HasY), comprising nine modules catalyzing the incorporation of amino

F IGURE 3 Structure of hassallidin A and schematic general structure of the hassallidin type of cyclic lipopeptides. Hassallidins are cyclic
glycosylated lipopeptides with a fatty acid chain, a peptide ring of eight amino acids, an exocyclic amino acid, and 1–3 sugar moieties. See Table
S1 for the exact stereochemistry of particular residues. Ara, arabinose; Dhb, dehydrobutyrine; FA, fatty acid; GalA, galacturonic acid; GlcNAc, N-
acetylglucosamine, man, mannose
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acids into the hassallidin peptide backbone via a thiotemplate mecha-

nism (Vestola et al., 2014). Interestingly, hassallidin biosynthetic path-

ways are rich in glycosyltransferases (HasB, HasD, HasE, HasP, HasQ,

HasT, and HasX) that could potentially catalyze the incorporation of

sugars (Vestola et al., 2014). HasR has been reported as an

acyltransferase that may catalyze the acetylation of hassallidin sugars

from Anabaena strains (Vestola et al., 2014). The first step in the bio-

synthesis of hassallidins is postulated to be the N-acylation of the

exocyclic Thr by HasV (Vestola et al., 2014). The N-acylation of

lipopeptides using starter condensation domains has been reported

from other lipopeptide biosynthetic pathways, including surfactin,

lichenysin, fengycin, and arthrofactin (Zhong et al., 2021). A putative

biosynthetic scheme for the lipidation of hassallidins implicates three

proteins (HasG, HasH, and HasL) in the addition of lipids (Figure 2,

Vestola et al., 2014). The combination of variation in the chain length

of the fatty acid moiety and lipoinitiation in the glycosylation patterns

leads to extensive variation in hassallidin chemical structure even

within the same strain (Vestola et al., 2014).

Hassallidins are so far the only known cyanobacterial antifungal

cyclic lipopeptides with an exocyclic peptide moiety (Neuhof

et al., 2005; Neuhof, Schmieder, et al., 2006). In this sense, they are

analogous to the bacterial lipopeptide fengycin, which is shown to act

on both bacteria and fungi but does not affect mammalian cells

(de Souza Freitas et al., 2020; Desmyttere et al., 2019; Lin

et al., 2020). Hassallidins were reported to possess promising antifun-

gal activities with low minimum inhibitory concentration values rang-

ing from 0.29 to 8.0 μM against Candida strains (Neuhof et al., 2005;

Neuhof, Schmieder, et al., 2006; Neuhof, Seibold, et al., 2006;

Shishido, Humisto, et al., 2015; Shishido, Jokela, et al., 2015). How-

ever, it was later shown that hassallidin D variants were equally

potent inducers of cell death in mammalian cells (Humisto

et al., 2019). The cell death in the mammalian cell was lytic, meaning

that cell death was caused by disruption of the cell membrane as

evidenced by rapid internalization of the propidium iodide counter-

stain into cells (Humisto et al., 2019). However, mitochondria

appeared to be functional at concentrations that caused disruption of

the outer cell membrane (Humisto et al., 2019). This was shown to be

due to the presence of low amounts of cholesterol in the mitochon-

dria, since liposomes containing only phospholipids showed higher tol-

erance to hassallidin D compared to liposomes consisting of both

phospholipids and cholesterol (Humisto et al., 2019). The antifungal

effect of hassallidin may thus be attributed to the presence of ergos-

terol in the fungal membrane because liposomes containing ergosterol

in the lipid membrane were equally sensitive to hassallidin D as those

containing cholesterol (Humisto et al., 2019). It was shown that the

EC50 for internalization of propidium idodide after hassallidin-

exposure in Candida was slightly higher than that of mammalian cells,

which was believed to be due to the presence of the fungal cell wall

(Humisto et al., 2019). Computer simulation of the interaction of

hassallidin with membranes with or without cholesterol suggested

that the strict organization of membranes lacking cholesterol ham-

pered the insertion of the acyl-chain of hassallidin D into the mem-

brane bilayer (Humisto et al., 2019). However, any temperature

dependency with respect to the transition temperature of the

membranes from the rigid gel phase to the more disorganized liquid

crystalline phase, has not been studied. The difference in membrane

organization can also affect the ability of biodetergents to insert into

the membrane, in addition to the presence of cholesterol.

4 | PUWAINAPHYCINS AND
MINUTISSAMIDES

Puwainaphycins A–G and minutissamides A–L are structurally homol-

ogous amphipathic cyclic lipopeptides featuring a β-amino fatty acid

and a nine-membered peptide ring (Gregson et al., 1992; Hrouzek

et al., 2012; Kang et al., 2011; Kang et al., 2012). These two cyclic

lipopeptides are distinguished by differences in the lengths and substi-

tutions of the fatty acid chain (Figure 4, Table S2). The peptide

sequence includes mostly proteinogenic amino-acids together with

modified N-methyl asparagine (NMeAsn) and dehydrobutyric acid

(Dhb) (Figure 4). All reported chemical variants contain a stable

NMeAsn-Pro-(FA)-Val-Dhb motif adjacent to the fatty acid (Figure 4).

Furthermore, both lipopeptide types exhibit considerable variability in

terms of length and functionalization of the fatty acid side chain

(Mareš et al., 2019). Puwainaphycins A–G (Gregson et al., 1992;

Hrouzek et al., 2012) and minutissamides A–L (Kang et al., 2011; Kang

et al., 2012) have been reported from the genera Cylindrospermum,

Symplocastrum, and Anabaena (Mareš et al., 2019). A wide range of

bioactivities has been reported for puwainaphycins and

minutissamides, including cardiovascular activity, antiproliferative

activity, and antifungal activity (Gregson et al., 1992; Hrouzek

et al., 2012; Kang et al., 2011; Kang et al., 2012).

Puwainaphycins and minutissamides share a common biosyn-

thetic origin involving a hybrid NRPS/PKS enzyme complex accompa-

nied by a number of tailoring enzymes (Mareš et al., 2019).

Lipointiation in the puwainaphycin and minutissamide biosynthetic

pathway involves unusual fatty acyl-AMP ligase (FAAL) starter units

(Figure 2, Mareš et al., 2014, 2019). Puwainaphycin and

minutissamide chemical diversity is generated largely by the presence

of two alternate fatty acyl-AMP ligase starter units, PuwC, and PuwI

(Figure 2), which allow the incorporation of fatty acids of differing

length (Mareš et al., 2019). Such alternate branched biosynthesis is

rare in the biosynthesis of natural products and further enhanced by

the unusually broad specificity for fatty acids substrates of various

lengths by PuwI (Mareš et al., 2019). Following activation, the fatty

acid residue is extended via two PKS modules encoded by PuwB and

PuwE, which also introduce additional methyl, hydroxyl, and amino

substitutes, of which the latter allows cyclization (Mareš et al., 2014).

The incorporation of amino acids into the puwainaphycin/

minutissamide peptide backbone is catalyzed by nine NRPS modules

found in proteins PuwA, PuwE, PuwF, PuwG, and PuwH (Mareš

et al., 2014, 2019). In addition, the PuwK putative halogenase, the

PuwL O-acetyltransferase, and the PuwJ monooxygenase, are present

in the biosynthetic gene clusters of some strains and contribute to the

chemical diversity of this family of cyclic lipopeptides (Mareš
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et al., 2019). These fatty acid-tailoring enzymes, in combination with

the alternate broad-specificity FAAL starter units, results in the

observed high chemical diversity of the hydrophobic moiety of

puwainaphycin/minutissamide, on which chloro-, acetyl-, and oxo�/

hydroxyl substituents can be present in various combinations

(Figure 4, Table S2).

Puwainaphycins have antagonistic effects on a variety of fungal

strains. Puwainaphycin A displays weak antifungal activity against

Candida strains (Mareš et al., 2019), but quite prominent inhibition

effects were observed against the plant and human pathogens

Alternaria alternata, and Aspergillus fumigatus, with minimum inhibitory

concentration values of 0.58, and 2.37 μg mL�1 (Hrouzek, 2021).

Puwainaphycins were shown to affect the membranes of other

eukaryotic cells, including human cells, in vitro (Hrouzek et al., 2012;

Vašíček et al., 2020). The cytotoxic effect was studied in detail in case

of puwainaphycin F/G which induce Ca2+ influx and necrotic cell

death eventually leading to vast membrane damage and LDH-leakage

with EC50 values between 1 and 10 μM (Hrouzek et al., 2012; Vašíček

et al., 2020). The fact that a similar phenotype was observed in HeLa

(human cervical cells), Caco2 (human colon adenocarcinoma) as well

as primary human fibroblasts suggests that puwainaphycin exerts a

rather general and nonspecific cytotoxic effect (Hrouzek et al., 2012;

Vašíček et al., 2020). The cytotoxic effect is clearly connected to their

membrane effect as these molecules were found to act on large

unilamellar vesicles composed of lipids only (Tomek et al., 2015). Cells

treated with puwainaphycin F/G undergo a rapid tyrosine phosphory-

lation (Hrouzek et al., 2012) and stimulate the production of the pro-

inflammatory interleukin 8 (Vašíček et al., 2020). However, whether

these cellular responses are a secondary consequence of the mem-

brane effects of the lipopeptides, or due to other cellular targets is

not yet known. Puwainaphycin F and minutissamide C also affected

an immune response and were pro-inflammatory at noncytotoxic con-

centrations in an intestinal barrier model (Vašíček et al., 2020). It was

speculated that these lipopeptides might increase the toxicity of

cyanobacterial hepatotoxin microcystin (Vašíček et al., 2020), which

could indicate that lipopeptides potentiate the toxic effect of the

hepatotoxins. This potentiation could be due to loss of integrity in

the intestinal wall, caused by the inflammatory response, but further

studies need to be conducted to reveal the connection between these

cyclic lipopeptides and microcystin poisoning.

5 | LAXAPHYCINS

The laxaphycins constitute a large family of cyclic lipopeptides, which

are characterized by a rare β-amino fatty acid with a short linear chain

of eight or 10 carbons (Figure 5, Tables S3, S4). Thirty-three reported

lipopeptides from the genera Scytonema, Anabaena, Hormothamnion,

F IGURE 4 Structure of
puwainaphycin E and schematic
general structure of the
puwainaphycin and
minutissamide type of cyclic
lipopeptides. Puwainaphycins and
minutissamides are structurally
homologous amphipathic cyclic
lipopeptides featuring a β-amino

fatty acid and a nine-membered
peptide ring. Residues depicted in
gray were described using high-
resolution mass spectrometry
only. In addition to depicted
structures also minor variants
bearing fatty acids with odd
carbon number (C11,C13, and C17)
were detected (Mareš
et al., 2019). See Table S2 for the
exact stereochemistry of
particular residues. Dhb,
dehydrobutyric acid; FA,
fatty acid
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Trichormus, Lyngbya, and Oscillatoria can be assigned to laxaphycin

family of cyclic lipopeptides (Heinilä et al., 2020). Laxaphycins divide

into two distinct groups, cyclic undecapeptides and dodecapeptides,

the major representative of each class being laxaphycin A and B,

respectively (Frankmölle, Larsen, et al., 1992; Luo et al., 2015).

Laxaphycin A and B compounds are frequently isolated from the same

cyanobacterium. Laxaphycin nomenclature is complicated because

new variants are usually named after the producing organisms even

though the two distinct macrocycle types are considered chemical

variants of a single family (Figure 5, Tables S3, S4). Laxaphycin A and

B chemical variants contain a range of nonproteinogenic amino acids,

including 4-hydroxyproline, Dhb, 3-hydroxyleucine, hydroxythreonine,

and hydroxyasparagine (Figure 5, Tables S3, S4). Laxaphycin A vari-

ants are characterized by segregation of hydrophobic and hydrophilic

residues, while laxaphycin B variants have alternating hydrophobic

and hydrophilic residues (Cai et al., 2018). However, the only common

structure between the two classes is the β-amino fatty acid and amino

acids compared by position to position are not only different but

belong in many cases to opposite polar groups (Tables S3, S4). The

chemical structures of the laxaphycin A and B types are highly con-

served and act in synergy to produce antifungal and antiproliferative

activity (Cai et al., 2018; Frankmölle, Knubel, et al., 1992).

F IGURE 5 Structure of
laxaphycin A and B and a
schematic general structure of
the laxaphycin type of cyclic
lipopeptides. The laxaphycins are
a large family of cyclic
lipopeptides, which are
characterized by a rare β-amino
fatty acid with a short linear chain

of 8 or 10 carbons and complex
nomenclature. See Tables S3, S4
for the exact stereochemistry of
particular residues. Dhb,
dehydrobutyric acid; FA, fatty
acid; Hse, homoserine
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Laxaphycins were predicted to be produced by distinct hybrid

NRPS/PKS biosynthetic pathways based on their chemical structures

(Bornancin et al., 2015, 2019). However, laxaphycin A and B chemical

variants are now known to be produced simultaneously through an

unusual branched biosynthetic pathway encoding a hybrid NRPS/PKS

enzyme complex encoded in a single 96-kb biosynthetic gene cluster,

as reported for scytocyclamides A and B (Heinilä et al., 2020). Lipo-

intiation in the scytocyclamide biosynthetic pathway is catalyzed by

the LxaA fatty acyl-AMP ligase that is predicted to activate a fatty

acid and load it to an acyl carrier protein (Figure 2, Heinilä

et al., 2020). Following activation, the fatty acid unit is extended by a

PKS module, which is split over the LxaB and LxaE proteins (Heinilä

et al., 2020). The biosynthesis of scytocyclamide A and B variants bra-

nches at this point (Figure 2, Heinilä et al., 2020). LxaC-D encodes

10 NRPS modules that extended the fatty acid by 10 proteinogenic

and nonproteinogenic amino acids to produce scytocyclamide A vari-

ants (Heinilä et al., 2020). Alternatively, LxaI-L encodes 11 NRPS mod-

ules that extend the fatty acid by 11 proteinogenic and

nonproteinogenic amino acids to produce scytocyclamide B variants

(Heinilä et al., 2020). Scytocyclamide A and B variants contain

3-OHLeu, 3-OHAsn, 4-OHPro, which are believed to be supplied to

the synthetase as precursors, while Dhb is produced through the

dehydration of Thr by the LxaC3 condensation domain (Heinilä

et al., 2020). Laxaphycin A and B chemical variants frequently contain

homoserine (Frankmölle, Knubel, et al., 1992; Luo et al., 2015). How-

ever, the scytocyclamide biosynthetic pathway does not encode an

obvious enzyme for the supply of homo amino acids to the pathway,

and homoserine is likely to be supplied to the laxaphycin peptide syn-

thetase as an intermediate of amino acid biosynthesis. Cyclization of

the scytocyclamide A and B peptide intermediates is achieved by

the thioesterase domain of LxaD and LxaL, respectively (Heinilä

et al., 2020).

Individual laxaphycin chemical variants are reported to have weak

antifungal activity (Frankmölle, Knubel, et al., 1992). However, a crude

mixture of all chemical variants (A–E) of both laxaphycin types leads

to a substantial potentiation of their antifungal effect (Frankmölle,

Knubel, et al., 1992). This study also showed that laxaphycin B and C

had the most potent antifungal activity, with activity towards most or

all fungi tested (Frankmölle, Knubel, et al., 1992). These also showed

moderate activity towards two human cell lines, whereas the other

variants (laxaphycin A, D, and E) showed low or no activity

(Frankmölle, Knubel, et al., 1992). The biological effects of the

laxaphycins in mammalian cells have been investigated and differ

somewhat from the detergent-like activity seen in other lipopeptides.

It appears that there is a large variation in the potency of the different

laxaphycins towards mammalian cells, with reports of EC50 values as

low as 0.8 μM in for instance, Laxaphycin B3 (Alvariño et al., 2020)

and 0.6 μM for [L-Val8] laxaphycin A (Bornancin et al., 2019). Interest-

ingly, linear laxaphycins appeared to be nontoxic (Alvariño

et al., 2020). Laxaphycin B and B3 induced apoptotic cell death as

evidenced by annexinV and propidium idodide staining as well as acti-

vation of caspase 3, but was also found to activate the autophagic

machinery (AMP-activated kinase and LC3 affection) in SH-SY5Y

neuroblastoma cells (Alvariño et al., 2020). This is in line with the find-

ings of Bornancin et al., who found that the metabolic rate of cells

was inhibited at lower concentrations than those inducing leakage of

lactate dehydrogenase (Bornancin et al., 2019). Laxaphycins appar-

ently have a variety of molecular targets, since laxaphycins A and B

have also been shown to cause alteration of topoisomerase II activity

(Gbankoto et al., 2005). In this study, only laxaphycin B was active,

but laxaphycin A potentiated the effect of laxaphycin B (Gbankoto

et al., 2005).

6 | ANABAENOLYSINS

Anabaenolysins are cyclic lipopeptides featuring a rare unsaturated

β-amino fatty acid with a conjugated triene structure and a four-

membered peptide ring (Jokela et al., 2012; Shishido, Jokela,

et al., 2015). The peptide ring also contains two proteinogenic amino

acids and the unusual 2-(3-amino-5-oxotetrahydrofuran-2-yl)-

2-hydroxyacetic acid moiety (Jokela et al., 2012). Anabaenolysins are

reported from benthic strains of the genus Anabaena isolated from

the Baltic Sea (Jokela et al., 2012; Shishido, Jokela, et al., 2015). These

strains of Anabaena produce multiple anabaenolysin chemical variants

that are distinguished by the length (C16–C19) and the nature of the

conjugated trienic structure of the β-amino fatty acid (Figure 6,

Table S5). Anabaenolysins have reported cytolytic activity against a

number of mammalian cell lines (Oftedal et al., 2012) and antifungal

activity against Candida albicans (Shishido, Jokela, et al., 2015).

Anabaenolysins are produced using a compact 23-kb hybrid

PKS/NRPS enzyme complex (Shishido, Jokela, et al., 2015). The first

module of the bimodular AblA protein is responsible for the elabora-

tion of the unsaturated β-amino fatty acid (Shishido, Jokela,

et al., 2015). However, there is no clear model for how lipoinitiation

proceeds and the anabaenolysin biosynthetic gene cluster lacks an

expected fatty acyl-AMP ligase (Figure 2). AblC is a fatty acid desa-

turase predicted to be responsible for the formation of double bonds

in the 3-amino-2-hydroxyoctadecanoic acid (Shishido, Jokela,

et al., 2015). The combined action of the second module of AblA and

AblB are predicted to be responsible for the biosynthesis of the

2-(3-amino-5-oxytetrahydrofuran-2-yl)-2-hydroxyacetic acid moiety

from asparagine or aspartic acid (Shishido, Jokela, et al., 2015). There

is no plausible mechanism at present for the formation of the

furanone moiety, although this is most likely to proceed through

methylation and cyclization of aspartic acid. AblD catalyzes the incor-

poration of Gly or Gln into the peptide intermediate followed by AblE

which incorporates Gly into the growing peptide chain, followed by

cyclization by the thioesterase domain of AblE (Shishido, Jokela,

et al., 2015).

Anabaenolysins have been shown to exhibit moderate antifungal

activity (Shishido, Jokela, et al., 2015). Interestingly, the

antifungal activity of anabaenolysins was improved by the presence of

cyclodextrins, and it has been shown that all known producers of

anabaenolysins also produce cyclodextrins (Besenicar et al., 2008;

Shishido, Jokela, et al., 2015). The mechanism for this synergistic or
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potentiating effect is not known, but it could be because the long

acyl-chain of anabaenolysin is embedded into the cyclodextrins, which

facilitates transport of the lipopeptide through the polar cell wall of

the fungi. Another explanation may be that cyclodextrins themselves

act on the membrane. Some cyclodextrins are known to extract ste-

rols from membranes (Irie et al., 1982), and it could be that cyclodex-

trin deprives the fungal membrane of sterols. It is likely that extraction

of ergosterol from the fungal membrane will affect viability, since one

of the targets of antifungal drugs is ergosterol synthesis (Houšť

et al., 2020). It has been shown that human erythrocytes that were

pretreated with cyclodextrins had higher tolerance for anabaenolysins.

This was explained by the fact that cyclodextrin pretreatment

deprived the erythrocyte membrane of cholesterol, and since

anabaenolysins is more active towards cholesterol-containing mem-

branes, its ability to lyse the erythrocytes was reduced (Oftedal

et al., 2012). This does not contradict the enhanced antifungal effect

of cyclodextrins and anabaenolysins. The experiment of Oftedal et al.

demonstrated the lysis of erythrocytes within minutes of treatment,

and did not address the complex functions of a nucleated cell with a

plethora of membrane-dependent mechanisms over days like an

experiment where the aim is to determine the minimum inhibitory

concentration (MIC). The activity of anabaenolysin has also been stud-

ied on mammalian cell lines, where it induces a lytic cell death similar

to that described for hassallidins. Disruption of membranes was evi-

dent by positive trypan-blue staining (Jokela et al., 2012; Oftedal

et al., 2012). Interestingly, the mitochondria appeared unharmed,

judging both by electron microscopy, and lack of leakage of cyto-

chrome C (Oftedal et al., 2012). There are other examples of cyclic

lipopeptides that are membrane-active including surfactin. However,

surfactin, originally isolated from Bacillus subtilis (Arima et al., 1968),

has the opposite cholesterol-dependency compared to hassallidin and

anabaenolysin, in that it is more active towards membranes lacking

cholesterol (Carrillo et al., 2003; Oftedal et al., 2012).

7 | STRUCTURAL AND MECHANISTIC
ASPECTS OF THE MEMBRANE ACTIVITY OF
ANTIFUNGAL CYCLIC LIPOPEPTIDES

Membrane-disruption is the most frequently reported bioactivity

associated with antifungal cyclic lipopeptides from cyanobacteria. The

fatty acid residue is modified with the amino group at the β-carbon,

which facilitates closure of the peptide ring in each of these com-

pounds (Figures 3-6, Tables S1–S4). The presence of a hydrophobic

acyl chain and a polar peptide-head creates an amphiphilic molecule

and facilitates its insertion into biological membranes. A long acyl-

chain comprised of 14–18 carbon atoms is a common feature of the

two best-studied compounds, hassallidins and anabaenolysins (Jokela

et al., 2012; Neuhof et al., 2005; Neuhof, Schmieder, et al., 2006;

Neuhof, Seibold, et al., 2006). A slightly broader fatty acid range has

been reported for puwainaphycins possessing 8–18 carbon atoms

(Mareš et al., 2019; Urajov�a et al., 2016). However, these cyclic

lipopeptides differ substantially in their peptide region. It is notable

that compare to lipopeptides produced by other bacterial groups,

cyanobacterial cyclic lipopeptides, in general, do not frequently con-

tain charged amino acids (Ongena & Jacques, 2008). This structural

feature may explain their low affinity for bacteria cells compared to

fungal cells. Anabaenolysins have a relatively small peptide ring con-

sisting of only three amino acids and one C18 β-amino acid (Jokela

et al., 2012) while hassallidins have a much larger peptide part of eight

amino acids forming the ring-structure, and the acyl-chain connected

to a small linear peptide branch (Neuhof et al., 2005, 2006c).

F IGURE 6 Structure of anabaenolysin
A and a schematic general structure of the
anabaenolysin type of cyclic lipopeptides.
Anabaenolysins are cyclic lipopeptides
featuring a rare unsaturated β-amino fatty
acid with a conjugated triene structure
and a four-membered peptide ring.
Residues depicted in gray were described
using low-resolution mass spectrometry

only. See Table S5 for the exact
stereochemistry of particular residues.
AOFHA, 2-(3-amino-5-
oxotetrahydrofuran-2-yl)-2-hydroxyacetic
acid moiety; FA, fatty acid
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Furthermore, the peptide ring may have a sugar attached, and the

acyl-chain may have up to two sugars (Neuhof et al., 2005; Vestola

et al., 2014). The role of the amino acids, or other constituents in the

lipid head, in the membrane disrupting activity, has not been thor-

oughly investigated, but Humisto et al. demonstrated that the first

contact between hassallidin and the membrane was by an interaction

between amino acids and the polar head of the lipids (Humisto

et al., 2019). The insertion of the acyl chain into the membrane hap-

pened at a later time-point, and appeared to be crucial for permanent

attachment of the molecule to the membrane. The exact role of ste-

rols has not been clarified, but the structural organization of the mem-

brane has been suggested (Humisto et al., 2019). For anabaenolysin, it

was shown that liposomes consisting of phosphatidylcholine with sat-

urated fatty acids were more resistant to lysis compared to liposomes

made from unsaturated soy phosphatidylcholine (Oftedal et al., 2012),

confirming that the rigidity of the membrane plays an important role

in the lytic activity of the lipopeptides. The polar heads of the cyclic

lipopeptides also play a role in the lytic activity in that they generate a

pulling force outwards, changing the membrane curvature, which

eventually breaks the membrane (Frenkel et al., 2014; Nishikawa

et al., 1984). Since the membrane-active lipopeptide has a much more

conical shape compared to phospholipids, this force will be stronger

compared to amphiphilic molecules with a small polar head, and this

could explain their rapid effect on membranes at very low

concentrations.

8 | OTHER ANTIFUNGAL CYCLIC
LIPOPEPTIDES

Cyanobacteria produce additional cyclic lipopeptides with long hydro-

carbon chains with antifungal and/or antiproliferative activity

(Niedermeyer, 2015), that do not fall into any of these four structural

classes. Muscotoxins A–C are cyclic lipopeptides consisting of a long

fatty acid side chain and 14 amino acid residues produced by Des-

monostoc muscorum (Cheel et al., 2018; Tomek et al., 2015). Mus-

cotoxins A and B manifest quite prominent inhibition effects that

were reached against the plant pathogens Alternaria alternata, Mon-

ographella cucumerina, and Aspergillus fumigatus, with minimum inhibi-

tory concentration values of 0.58, 2.34, and 2.34 μg mL�1 (Cheel

et al., 2018). Muscotoxins are thought to permeabilize phospholipid

membranes by reducing their fluidity (Cheel et al., 2018; Tomek

et al., 2015). Nostofungicidine is an antifungal cyclic lipopeptide iso-

lated from Nostoc commune containing a long fatty acid side chain and

eight amino acids residues (Kajiyama et al., 1998). This cyclic

lipopeptide demonstrates antifungal activity against Aspergillus can-

didus with a minimum inhibitory concentration of 1.6 μg mL�1

(Kajiyama et al., 1998). Calophycin is a cyclic decapapetide with a long

fatty acid side chain that was isolated from Calothrix fusca and dis-

played antifungal activity with minimum inhibitory concentration

values of 1.25, 2.5, and 1.25 μg mL�1 against C. albicans, Trichophyton

mentagrophytes, and Aspergillus fumigatus, respectively (Moon

et al., 1992). Calophycin also displayed cytotoxic against a human

nasopharyngeal carcinoma cell line with an IC50 of 0.2 μM (Moon

et al., 1992). The biosynthetic origins of muscotoxins, nostofungicidine,

and calophycin are currently unknown. However, genome mining stud-

ies demonstrate that cyanobacteria encode a wide variety of cyclic

lipopeptides that are unlikely to fall into the four structural classes

reviewed here (Galica et al., 2017). Together, it follows that cyano-

bacteria produce a range of cyclic lipopeptides with antifungal and

antiproliferative activity that defy current classification.

9 | CONCLUSIONS

Cyanobacteria are an underappreciated source of chemically diverse

cyclic lipopeptides that display antifungal activity, and their full potential

still remains to be unraveled. Many of the cyclic lipopeptides achieve this

activity through disruption of membranes and act as biodetergents.

Membrane disruption is in some cases cholesterol and ergosterol-depen-

dent. However, it should be noted that most cyanobacterial cyclic

lipopeptides are not extensively tested for biological activity. In many

cases, these cyclic lipopeptides are also cytotoxic, and a more extensive

examination of their biological activity and structure–activity relationship

is warranted and justifies the chemical synthesis of improved cyclic

lipopeptide analogs. The cyanobacterial cyclic lipopeptides can fill a gap

in drug development, where there is an urgent need for novel molecular

entities to face the increasing demand for new therapeutics, for instance

in the treatment of cancer or fungal infections. The biosynthetic logic

underpinning the biosynthesis and chemical diversity of cyanobacterial

lipopeptides is slowly being unraveled. This approach now allows the

classification of cyanobacterial lipopeptides into families of compounds

that are likely to share similar biological activity. The genetic origins of

cyclic lipopeptides and the mechanisms, which drive their structural

diversification, are poorly understood. However, in the case of

laxaphycins, pairs of lipopeptides act synergistically and their biosynthe-

sis is shared in a unique organization of biosynthetic enzymes. It is clear

from bioinformatics studies that cyanobacteria encode a wealth of

lipopeptides that remain to be characterized opening to cyanobacteria as

a rich source of new lipopeptides with novel biotechnological and thera-

peutic applications.
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