Photophysiology of symbiosis between haptophyte host and UCYN-A diazotroph

<u>Ondřej Prášil</u>,¹ Esther W.K. Mak², Tyler Coale², Kyoko Hagino³, Eva Kotabová¹, Jiří Šetlík¹ and Jonathan Zehr²

¹Institute of Microbiology of the Czech Academy of Sciences, Center Algatech, Trebon, Czech Republic; ²Department of Ocean Sciences, University of California Santa Cruz, USA; ³Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan

E-mail: prasil@alga.cz

The diazotrophic cyanobacterium UCYN-A shows unusual degree of metabolic streamlining¹ suggesting obligate symbiosis with its haptophyte host *Braarudosphaera bigelowii*². Here we report results of the laboratory experiment studying the metabolic coupling between the host and UCYN-A. Laboratory cultures³ were grown at 18°C under 12h Light/ 12h Dark cycles. Photosynthesis of the host was assayed by Chlorophyll variable fluorescence (FRR fluorometery) and by oxygen production (Clark electrode). Nitrogen fixation of UCYN-A was measured as acetylene reduction by GC.

 N_2 fixation in UCYN-A occurs only during the light period and is strictly light dependent and stops immediately when cells are transferred into dark. The light-dependent rate of N_2 fixation in UCYN-A saturates at light intensities of 50-70 umol quanta.m⁻².s⁻¹, independently of the growth irradiance. This is significantly lower than the saturation of the photosynthesis of the host (120-250 umol quanta.m⁻².s⁻¹, depending on the growth irradiance). N_2 fixation of the symbiont seems to be under circadian rhythm, cells do not fix N_2 when exposed to light during the subjective night period. The light-dependent N_2 fixation of the symbiont continues for several hours even if the photosynthesis of the host is fully inhibited by DCMU. This indicates that there exists a pool of reduced carbon produced by the host that fuels N_2 fixation even when its photosynthesis is inhibited. On the other hand, N_2 fixation can be inhibited by compounds that block thylakoid membrane electron flow in the symbiont or that collapse the transmembrane gradient. Our results confirm the active and indispensable role of Photosystem 1 in supplying reductant and/or ATP to N_2 fixation in UCYN-A.

References

- 1. Zehr, J. P., Bench, S. R., Carter, B. J., Hewson, I., Niazi, F., Shi, T., Tripp, H. J. & Affourtit, J. P. (2008) Science, 322, 1110-2.
- 2. Hagino, K., Onuma, R., Kawachi, M. & Horiguchi, T. (2013) Plos One 8.
- 3. Suzuki, S., Kawachi, M., Tsukakoshi, C., Nakamura, A., Hagino, K., Inouye, I. & Ishida, K. I. (2021) Front Plant Sci, 12, 749895