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AbstractAcid mine drainage (AMD) is a significant threat to the environment due to its high acidity and metal ion content. To effectivelyeliminate pollutants from AMD, various approaches are necessary. This review aims to provide a comprehensive understanding ofrecent advances in AMDmitigation. While treatment technologies have developed to eliminate AMD, they often produce sludgeas a by-product and require expensive maintenance. As a cost-effective alternative, the recovery of AMD resources can reducetoxicity and promote reuse of heavy metals and rare earth elements. This review also analyzes the challenges and prospects of AMDmitigation implementation, including current mitigation conditions and knowledge gaps. Researchers can benefit from this review bygaining insight into research progress in this area, identifying strengths and weaknesses of current AMDmitigation applications, andexploring future research directions.
KeywordsAcid Mine Drainage, Wastewater Treatments, Adsorption, Bioremediation, Constructed Wetlands, Electrochemical, MembraneTechnology

Received: , Accepted:
https://doi.org/10.26554/sti.2023.8.3.344-352

1. INTRODUCTION

Acid mine drainage (AMD) has become an environmental
problem in several countries with mining areas (Lee et al.,
2022a) . AMD is formed when oxygenating water contact with
sulfur-containing material to form an acid solution (Shen et al.,
2022; Zhang et al., 2022). The solution will have a very low
pH (< 3) and can dissolve heavy metals when in contact with
materials containing heavy metals (Chen et al., 2021a; Xin
et al., 2021). In general, AMD is formed from ex-mining
lands, like coal and metal mining, which is a long-term threat
because of its formation for decades from the mining land
if no prevention of AMD formation is carried out (Borden
et al., 2022) . Some research reported that AMD contains

dissolved metals such as iron, aluminium, zinc, copper, and
other metals (Brar et al., 2022; Shi et al., 2022; Zhang et al.,
2022). Therefore, AMD entering the environment can cause
pollution to water bodies and soil, and also it can have adverse
effects on living organisms (Abfertiawan et al., 2020) .

AMD’s pollution of surface water, groundwater, and soil
is mostly caused by non-active mining areas that are not ad-
equately reclaimed (Li et al., 2014) . This effect is that mate-
rials containing sulfur and heavy metals will always generate
AMD. Therefore, some researchers have encouraged to look
for cost-effective and environmentally friendly methods to pre-
vent the formation of AMD (Bai et al., 2021; Demers et al.,
2017). Based on previous studies, oxygen barrier (dry and
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water cover) (Matsumoto et al., 2016; Moncur et al., 2015)
and surface passivation techniques can be applied to prevent
AMD formation (Zeng et al., 2013) . In general, the dry cover
method is often used to prevent the formation of AMD (Lu
et al., 2013) . The principle of this technique is an oxygen bar-
rier where rocks having the potential to produce acidity will be
covered with non-acidity materials (Abfertiawan et al., 2020) .
Some materials that can be used as cover are organic soil (De-
mers et al., 2017) , fly ash (Win et al., 2020) , green liquor dregs
(Mäkitalo et al., 2014) , and others. Besides that, the surface
passivation technique can reduce the pyrite oxidation rate to
50–95% (Qian et al., 2017; Zeng et al., 2013). However, if the
mitigation process is not good, the AMD formation will still
occur. In practice, the process of preventing AMD formation
is very challenging (Chen et al., 2021a) .

Generated AMD must be treated before it is discharged
into the environment. In general, the choice of AMD process-
ing technology will differ depending on the source, compo-
sition, pH, environment, and cost (Park et al., 2019) . Many
researchers have proposed several technologies categorized
into active and passive treatment techniques (Bai et al., 2021;
Vasquez et al., 2022). Examples of passive techniques are biore-
mediation, constructed wetlands, phytoremediation (Wibowo
et al., 2023a; Wibowo et al., 2022b) and bioreactors (Ka-ot
and Joshi, 2022; Thomas et al., 2022; Wang et al., 2021a),
while the active techniques include neutralization, precipitation,
adsorption, electrochemical treatment, and membrane tech-
nology (Angai et al., 2022; Bao et al., 2022; Lee et al., 2022b).
Both techniques have advantages and disadvantages (Ighalo
et al., 2022) . For the advantage, the active technique has high
efficiency while the passive technique does not require much
cost (Park et al., 2019) . While for the disadvantage, AMD
treatment is very costly for active techniques and requires an
extended period for passive techniques, respectively (Kefeni
et al., 2017) . Although the treatment has high efficiency in the
active technique, it generates a by-product in the form of sludge
concentrated in heavy metals (Hu et al., 2022) . Therefore, it is
necessary to carry out other treatments on the by-products.

Based on the limitation of the treatment technique, recov-
ering resources from AMD could be another option that can
be used to reduce AMD toxicity (Hermassi et al., 2022) . Some
researchers reported that AMD contains various heavy met-
als that can be recovered by several methods (Barthen et al.,
2022; Chen et al., 2022; Li and Zhang, 2022). Therefore,
micro-flotation, precipitation, ion exchange, adsorption, and
membrane distillation can be applied to recover AMD (Bai
et al., 2021; Brar et al., 2022; José and Ladeira, 2021; Qiu
et al., 2021). Hermassi et al. (2022) reported that common
metals of Fe, Al, Mn, Ca, Mg, Cd, and Pb can be recovered
from AMD by phosphate precipitation and ion exchange. Be-
sides, Menzel et al. (2021) also reported that a total of 100%
copper recovery from AMD could be achieved by integrating
sulfide precipitation and microfiltration. Based on that, com-
pared to the treatment technique, the AMD recovery technique
can be a promising option for increasing the value of AMD

resources (López et al., 2018) .
The purpose of this review is to provide more understand-

ing of recent advances in the prevention of AMD formation and
AMD mitigation with their limitation. Although many review
papers have discussed it, this review will help researchers see the
knowledge gap as a direction for future research, understand
research progress in this area and analyze the strengths and
weaknesses of current AMD mitigation applications. There-
fore, this review paper summarizes AMD related to the source,
microbial community, biogeochemical process, and impact
of AMD on the environment. In addition, several AMD for-
mation prevention technologies are also described. Recent
treatment technology for mitigation is also presented in this
review paper. In addition, recovery of AMD resources is also
discussed, along with the methods used based on previous
research. Therefore, challenges and prospects in AMD mitiga-
tion implementation are also discussed to evaluate the current
mitigation conditions.

2. METHOD

This review employed a systematic literature review approach,
combined with content analysis, to establish a comprehensive
and holistic understanding of the treatment methods for age-
related macular degeneration (AMD). Additionally, a mapping
of recently published papers focusing on AMD treatment was
conducted using the Scopus database. The keyword "acid mine
drainage treatment" was utilized, resulting in the identifica-
tion and analysis of 3,141 relevant documents. To visualize
and map potential topics for the review, VOSViewer software
version 1.6.19 was employed as a powerful tool.

3. RESULTS AND DISCUSSION

3.1 Research Overview
A systematic literature review approach, combined with content
analysis, offers a robust methodology for conducting in-depth
research and generating comprehensive insights. By combin-
ing these two methods, researchers can gather, analyze, and
synthesize a wide range of relevant information from multiple
sources, providing a comprehensive understanding of a partic-
ular topic. A systematic literature review involves a meticulous
and structured search strategy to identify and retrieve relevant
studies from various databases, ensuring a comprehensive cov-
erage of the existing literature. This approach minimizes biases
and ensures transparency by following predefined criteria and
guidelines for study selection. By systematically examining
a broad range of literature, researchers can identify patterns,
trends, and knowledge gaps, enhancing the credibility and reli-
ability of the findings.

Content analysis, on the other hand, involves a detailed
examination and interpretation of the collected data. It allows
researchers to identify and extract key themes, concepts, and
information from the selected studies. By employing coding
schemes and categorization techniques, content analysis en-
ables researchers to analyze the textual or visual content of
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the literature, providing a deeper understanding of the subject
matter. Combining systematic literature review with content
analysis enhances the rigor and comprehensiveness of the re-
search process. It enables researchers to identify commonalities,
differences, and emerging themes across multiple studies, facil-
itating the synthesis of diverse perspectives and evidence. This
approach helps to identify research gaps, theoretical frame-
works, and areas for further investigation.

Moreover, the integration of content analysis within a sys-
tematic literature review enables researchers to go beyond a
simple summary of the literature. It allows for a more nuanced
analysis of the content, such as identifying conceptual frame-
works, theoretical perspectives, methodological approaches,
and practical implications. By extracting and analyzing rele-
vant information, researchers can provide deeper insights into
the research topic, identify trends, and propose future direc-
tions for research and practice. However, it is important to
acknowledge the limitations of this approach. The quality and
availability of the literature can impact the findings, and the
interpretation of data during content analysis can be subjec-
tive to some extent. Therefore, it is crucial for researchers to
clearly articulate their methodology, criteria for study selection,
and data analysis techniques to enhance the transparency and
replicability of their work.

Figure 1 provides a visualization of the total number of
documents retrieved from the Scopus database related to the
keyword "acid mine drainage treatment." The data reveals an
upward trend in the number of published papers since 2013,
indicating a growing concern for the environmental degrada-
tion caused by acid mine drainage. Notably, the peak number
of published papers was observed in 2016, surpassing 200
papers. It is worth highlighting that even in May 2023, there
have over 100 papers published, surpassing the total number of
documents published until December 2022. This observation
aligns with previous studies that have reported an increasing
awareness of the environmental issues associated with acid mine
drainage. The continuous publication of research papers in this
field suggests an ongoing interest in addressing and mitigating
the problems caused by AMD.

Figure 2 shows the most contribution of authors according
to 3,141 documents by Scopus database. It explains that the
authors that published most papers in AMD treatment come
from China. This is related with the condition that China is
the country that has abundant resources of mining (coal, and
minerals). China is renowned for its abundant reserves of vari-
ous minerals and natural resources. The country’s geological
wealth encompasses a wide range of valuable resources, includ-
ing coal, iron ore, rare earth elements, copper, gold, and more.
These abundant mine resources in China have played a signifi-
cant role in driving the country’s economic growth, industrial
development, and global trade. One of the key resources found
in abundance in China is coal. China has the world’s largest
coal reserves, and it has a dominant player in the global coal
industry for many years. Coal has a vital energy source for
China, fueling its rapid industrialization and providing elec-

Figure 1. Documents from Scopus Database

tricity for its growing population. However, China’s reliance
on coal has also led to significant environmental challenges,
such as air pollution, greenhouse gas emissions and AMD. The
acidic mine water produced as a result of coal mining activ-
ities in China often contains high concentrations of various
pollutants, including heavy metals such as iron, manganese,
and aluminum. These pollutants pose significant risks to both
human health and the environment. Acidic water with ele-
vated metal concentrations can contaminate rivers, lakes, and
groundwater, leading to the destruction of aquatic ecosystems
and impacting the availability of clean water for various uses.

Figure 3 presents the prominent keywords used in the con-
text of AMD treatment. The primary keyword utilized is "acid
mine drainage," which represents the central concept. An-
other notable keyword is "adsorption," which signifies one of
the potential treatment methods for addressing AMD-related
issues. Adsorption has emerged as a promising approach in
tackling the challenges posed by AMD. Furthermore, the fig-
ure displays several other keywords such as phytoremediation,
biomass, algae, nanoparticle, bioremediation, constructed wet-
lands, and membrane. These keywords indicate the diverse
range of treatment options being explored for AMD. However,
it is noteworthy that "adsorption" stands out as the most popular
keyword, possibly due to its limited application at an industrial
scale. Consequently, researchers are driven to investigate the
optimal materials, contact time, and dosage of adsorbents to
effectively address the complexities associated with AMD. By
identifying and analyzing these keywords, researchers gain in-
sights into the prevailing trends and areas of focus within the
field of AMD treatment. This information aids in directing
future research endeavors and optimizing the development of
effective and efficient treatment methods for AMD.

3.2 Acid Mine Drainage
3.2.1 Overview of AMD
AMD is wastewater in coal mining activities. Characteristics
of AMD in mining areas are low pH (<6) and high heavy
metals (Zhao et al., 2012) . AMD is classified into five types
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Figure 2. Most Contribution of Published Paper by Authors Name

Figure 3. Keywords of Related Published Papers

according to chemical reactions and compounds (Acharya and
Kharel, 2020) . The first type of AMD is AMD with a pH
of less than 4.5 and high metal ions such as Mn, Al, and Fe.
The first AMD type also contains high levels of acidity and
oxygen. A recent study reported that the first type of AMD
was found in Jambi Province, Indonesia. This study shows
that AMD in Jambi Province contains high Al, Mn, Fe and
Ca contaminations (Wibowo et al., 2020) . The second type
of AMD is wastewater from mining areas that have a high
concentration of Fe and Mn, this type also has a low oxygen
level (even in several cases, it does not have oxygen), and the
AMD is alkaline (pH>6). AMD type two is a type of AMD often
found in small-scale coal mines. Under oxidizing conditions,
AMD type two will turn into type one AMD. The decrease
in pH of AMD causes this condition. The decrease in pH

in AMD will cause the mobilization of metals in the water
to be very fast, and this condition is one of the factors that
cause the high content of heavy metals in AMD. The third
type of AMD is indicated by the presence of Fe and Mn at
low to moderate concentrations with low to no oxygen content
and relatively good acidity (pH >6). The third type of AMD
is characterized by the alkalinity being more significant than
the acidity value. Type three AMD is also known as alkaline
mine drainage. Under oxidizing conditions, AMD type III will
form acid from the hydrolysis of the salt, and the precipitation
reaction will be neutralized by alkaline compounds found in
nature. AMD type four is a change from AMD type one,
neutralized but still has high suspended particles. Changes in
AMD type four usually occur after adding calcium carbonate
or other materials that can produce Ca(OH) 2. Even though

© 2023 The Authors. Page 4 of 26



Wibowo et. al. Science and Technology Indonesia, 8 (2023) 344-352

there has an increase in pH, AMD still contains heavy and light
metals harmful to humans. A recent study informed that the
deposition of heavy metals through precipitation could only
occur in Fe and Mn metals, while other metal ions cannot be
precipitated at neutral pH (source). The last type is AMD type
one which has successfully neutralized and contains high Ca
and Mg, one of the efforts to prevent the formation of AMD
type five is to place AMD in a location with low alkalinity.

All types of AMD are formed due to the contact between
air, sulfide minerals (FeS/pyrite) and air. Pyrite rocks com-
monly found in mining areas and closely related to the forma-
tion of AMD include pyrite (FeS), marcasite (FeS2), pyrrhotite
(FexSx), galena (PbS), chalcocite (Cu2S), chalcopyrite (CuFeS2),
arsenopyrite (FeAsS), molybdenite (MoS2), covellite (CuS) and
sphalerite (ZnS) (Mkandawire, 2020) . Land clearing in open
mining areas will oxid iron sulfide to ferrous iron and sulfur
and contain a low pH, and the Eq reaction can describe this
condition.

FeS2 +
7
2

O2 + H2O⇆ Fe2+ + 2SO2−
4 + 2H+ (1)

Ferrous iron (Equation 1) is then oxidized to be ferric iron
(Fe3+). The reaction to changing ferrous iron to ferric can be
seen in Equation 2.

Fe2+ + 1
4

O2 + H+ ⇆ Fe3+ + 1
2

O2 (2)

If hydrolysis occurs in AMD at Equation 2 will form the
reaction in Equation 3.

Fe3+ + 3H2O⇆ Fe(OH) 3 + 3H+ (3)

Reaction to Equation 3 can turn into a reaction in Equation
4 if acidity is formed, breaking down FeS2 to produce more
Fe2+, sulfate, and acidity (H+). If there is a slowdown in each
reaction, there is a possibility that the formation of AMD will
slow down. Then if there is a reaction that stops at one of the
Equation, the formation of AMD will also stop.

FeS2 + 14Fe3+ + 8H2O⇆ 15Fe2+ + 2SO2−
4 + 16H+ (4)

Lack of water or oxygen in each reaction of the formation
of AMD will inhibit the oxidation of sulfide minerals. This
condition can cause the formation of AMD to slow down or
stop. Sulfide minerals such as pyrite are generally found in the
subsurface under the water layer. This location usually does
not contain oxygen, so AMD does not form. Land clearing
carried out for mining purposes causes pyrite below the surface
of the water to oxidize because it meets oxygen to form AMD.
In stable (undisturbed) conditions, the sulfide minerals below
the surface are confined to massive rocks. Although there is

potential for oxidation in controlled conditions, natural con-
ditions can neutralize the AMD. This condition is due to the
minimal amount of oxygen below the surface. Thus, the sur-
rounding rock can dilute and neutralize the volume of AMD
formed. The primary mechanism of pyrite oxidation in the
environment can be seen in the image below.

In addition, sulfur is a mineral that can cause the formation
of AMD. Sulfur is also found in coal, contaminating water and
air. Sulfur found in coal or other rocks associated with coal
is in the form of organic sulfur, pyrite, or sulfate. Sulfur in
mining environments is usually found in the form of sulfate in
small amounts in coal or other rocks containing pyrite. Sulfur
in the form of sulfate is produced from the oxidation process of
sulfide minerals such as jarosite (KFe3(SO4) 2(OH) 6) which is
readily soluble to produce acidic solutions in the environment.
Sulfur or sulfide is a sulfur mineral that is commonly found in
coal. The iron disulfide is one of coal’s most common sulfide
minerals (FeS2). Pyrite, one of the factors causing AMD, is di-
vided into six types: primary massive, primary euhedral pyrite,
plant replacement pyrite, mossy pitted pyrite, secondary cleat
coast, and framboidal pyrite. Pyrite and sulfur, which are fac-
tors forming AMD, are reported to have a directly proportional
amount below the soil surface.

Another factor that is also reported to affect the formation
of acid mine drainage is the activity of bacteria. The bacteria
most reported to be associated with iron oxide (Fe2+) and metal
sulfide were T. ferrooxidans and T. thiooxidans. A study reported
that T. ferrooxidans and T. thiooxidans could oxidize elemen-
tal sulfur and sulfide to sulfuric acid. (S◦ + 1.5 O2 + H2O →
H2SO4 and S2− + 2O2 + 2H+ → H2SO4). The mechanism of
pyrite oxidation involving bacteria is divided into two types: di-
rect metabolic reaction where bacteria will make direct contact
with pyrite rock and indirect metabolic reaction mechanism
where bacteria and pyrite rock do not require direct physical
contact. In indirect metabolism, bacteria will oxidize Fe2+ to
Fe3+.

3.2.2 Microbial Community in AMD
The microbial community in AMD plays a crucial role in the
biogeochemical processes occurring in these environments.
AMD is characterized by its high acidity and elevated concen-
trations of heavy metals, which create extreme conditions that
are challenging for most organisms to survive. However, cer-
tain acidophilic microorganisms have adapted to thrive in these
harsh environments and contribute to the overall microbial
community dynamics. One of the primary groups of microor-
ganisms found in AMD is acidophilic bacteria. These bacteria
have evolved mechanisms to tolerate and utilize the high levels
of acidity present in these environments. They possess various
acid resistance mechanisms, such as proton pumps and pH
regulation systems, which allow them to maintain intracellular
pH and survive under extreme acidic conditions. Acidophilic
bacteria are involved in several important processes, including
the oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+), which
is a key step in the generation of AMD. Through this process,
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Figure 4. Mechanism of Pyrite Oxidation

they contribute to the release of metals from sulfide minerals
and the subsequent contamination of water bodies.

Additionally, acidophilic bacteria play a vital role in sulfur
cycling within AMD ecosystems. They are capable of oxidiz-
ing reduced sulfur compounds, such as sulfides and elemental
sulfur, to generate sulfate ions. This oxidation process not only
contributes to the overall acidity of the drainage but also pro-
vides a source of energy for these bacteria. Furthermore, some
acidophilic bacteria are involved in the reduction of sulfate,
which can lead to the production of hydrogen sulfide (H2S)
and contribute to the formation of acid mine drainage. Ar-
chaea also contribute to the microbial community in AMD,
although they are less well-studied compared to bacteria. Aci-
dophilic archaea belonging to the phylum Euryarchaeota, such
as Ferroplasma and Acidiplasma, have identified in AMD en-
vironments. These archaea are capable of oxidizing iron and
sulfur compounds, similar to acidophilic bacteria. Their pres-
ence in AMD indicates their ability to withstand extreme acidity
and contribute to the biogeochemical processes occurring in
these environments.

In addition to bacteria and archaea, fungi have also detected
in AMD ecosystems. While their role in AMD is not as well-
understood as that of bacteria and archaea, they are known
to contribute to organic matter decomposition and nutrient
cycling. Fungal species such as Aspergillus and Penicillium
have identified in AMD environments, and their ability to tol-
erate acidic conditions suggests their potential involvement in
the breakdown of organic matter and the overall functioning
of the microbial community. The microbial community in
AMD is not only important for the biogeochemical processes
occurring within these environments but also holds potential
for biotechnological applications. Certain acidophilic microor-
ganisms have studied for their ability to recover valuable metals
from AMD through a process known as bioleaching. These
microorganisms can selectively leach metals from solid ores,
offering an environmentally friendly alternative to traditional
mining methods.

Some of the microbes involved in the formation of AMD
are Acidithiobacillus ferrooxidans bacteria. These bacteria are
microorganisms that are responsible for the formation of Fe2+

in AMD. The presence of Acidithiobacillus ferrooxidans bacte-
ria will accelerate the rate of Fe2+ oxidation up to six times
faster. A study reported more fully that the bacteria active
in the formation of AMD were Q-proteobacteria, specifically
Acidithiobacillus spp. (formerly T. ferrooxidans, Thiobacillus cal-
dus) and Thiobacillus spp. In addition, the Norwegian mine
has found the presence of the bacterium Thiomonas sp. (strains
Ynys1 and Ynys3 and an isolate designated NO-16 (Johnson
et al., 2001) . In addition to Norway, six species of heterotrophic
K-proteobacteria of the genus Acidiphilum were in pure culture.
Acidiphilum cryptum (strain JF-5) has isolated from a lake near
a mining area in Germany. Baker and Banfield (2003) has
reported in their research that there are many bacteria involved
in the formation of AMD, besides that, these bacteria are also
the cause of the low pH value in AMD in various mining areas
in the world. One AMD that has a pH lower than 1.0 has
found in several mines in mountainous areas. Several group
names are proposed to classify the bacteria involved in forming
AMD, including thermoplasma, Eplasma, Dplasma, CPlasma,
Bplasma, Aplasma and Ferroplasma.

Archaea and Eucarya are the two most commonly reported
bacterial lineages found in the formation of AMD. Thermoplas-
matales and Sulfolobales are the two types of bacterial species
in the archaea group most commonly found in AMD. Sul-
folobales and Metallosphaera prunae were also found in AMD
environments, while the bacteria Sulfolobales genera, Acidianus
and Sulfolobus were only found in acidic geothermal environ-
ments (Baker and Banfield, 2003) . Many studies have reported
the presence of bacteria in the Eucarya group found in AMD.
Ciliates belong to Cinetochilium genus, and an amoeba related
to Vahlkamp¢a sp. Within the lineage Heterolobosea, and three
gallates (Eutreptial spp.), Vahlkampca sp. has also isolated and
found in iron mines in mountainous areas. Bacteria belonging
to the aforementioned Eukaryotic category were also found
in the Rio Tinto River, Spain, at pH 2 (Amaral Zettler et al.,
2002) .

3.2.3 Impact of AMD on the Environment
The impact of acid mine drainage (AMD) on the environment
is significant and widespread, affecting various ecosystems and
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natural resources. AMD is formed when water interacts with
sulfide minerals exposed during mining activities, resulting in
the release of acidic water containing high concentrations of
heavy metals and other contaminants. This acidic and metal-
laden drainage poses numerous environmental challenges that
can have long-lasting effects. One of the primary concerns
related to AMD is the contamination of water bodies. As AMD
discharges into streams, rivers, and groundwater sources, it
alters the water chemistry, making it highly acidic and toxic
to aquatic life. The acidic conditions reduce the pH of the
water, negatively impacting the survival and reproduction of
aquatic organisms. The elevated levels of heavy metals, such as
iron, aluminum, and manganese, released from sulfide minerals
can accumulate in water bodies, posing a risk to fish, inverte-
brates, and other aquatic organisms. These metal contaminants
can impair the health and reproductive capabilities of aquatic
species, disrupt food chains, and lead to the loss of biodiversity
in affected ecosystems.

The effects of AMD are not limited to water bodies. When
acidic mine water comes into contact with soils, it can cause
soil acidification and lead to the depletion of essential nutrients.
Acidic conditions in the soil hinder the growth of plants and can
result in reduced crop yields and the loss of vegetation cover.
The impacts of AMD on terrestrial ecosystems are particularly
concerning as they can disrupt the balance of natural habitats,
leading to habitat degradation and fragmentation. Moreover,
AMD can have far-reaching consequences for human com-
munities. Contaminated water sources resulting from AMD
can jeopardize the availability of clean drinking water, posing
risks to human health. Heavy metals and other contaminants
present in AMD can accumulate in the food chain, potentially
reaching humans through the consumption of contaminated
crops and aquatic organisms. This exposure to toxic substances
can have detrimental effects on human health, leading to vari-
ous illnesses and disorders. Another important consideration
is the economic impact of AMD. The contamination of water
sources hampers their usability for industrial, agricultural, and
recreational purposes, thereby affecting local economies that
rely on these resources. The negative perception associated
with AMD-affected areas can also deter potential investments
and tourism, further impacting local economies and employ-
ment opportunities.

AMD is surface water that has decreased in quality due to
the oxidation process of sulfide and oxygen minerals. A recent
study even reported that AMD does not only have a destructive
impact on surface water. AMD is reported to have polluted
karst aquifers in Guizhou Province, China with the discovery of
Ca2+, Mg2+, HCO3

− , SO4
2− , F− , and Fe contents (Ren et al.,

2021) . In addition, water and soil pollution have also reported
in Guangdong Province, China (Liao et al., 2016) . Pollution on
surface water is caused by surface water in contact with sulfide
minerals exposed due to the mining process. Groundwater
pollution is caused by acid mine drainage infiltrating the soil
until it reaches the aquifer. This condition will be hazardous
if it occurs for a long time. Contaminated groundwater can

long-term impact communities around mining areas that use
groundwater to meet their daily needs.

Groundwater pollution does not only occur in China. A
recent study reported groundwater pollution in the Osarizawa
Mine area, Akita Prefecture, Japan. Although mining activi-
ties have stopped since the 1970s, the impact on groundwater
quality degradation is still happening (Nishimoto et al., 2021) .
Using contaminated groundwater for bathing and drinking will
cause various health problems. Heavy metal contamination
caused by AMD will impact the supply chain. AMD will impact
agricultural products produced in the region, which will harm
human health. A study reported that long-term consuming
foods and beverages containing heavy metals would cause can-
cer, poisoning, skin disease and death (Tolvanen et al., 2019;
Kim et al., 2007). The impact of heavy metal accumulation
is not only found in crops consumed by humans. Accumula-
tion of heavy metals (Fe and Mn) has also found in endemic
plants Lavandula stoechas subsp. Luisieri in Portugal and the
Southwest of Spain, in 2017, several endemic plants such as
Lavandula stoechas subsp. luisieri, Origanum vulgare subsp. virens,
and Calaminetha nepeta subsp. nepeta (Sabina et al., 2019) .

Heavy metals contained in AMD can contaminate the soil
through the infiltration process. Besides that, heavy metal
contamination in the soil will also cause heavy metals to be
absorbed by plant roots, causing the plant to be contaminated.
Heavy metals adsorbed on plant roots will be distributed through
the xylem and phloem to the plant body parts. In addition,
AMD is also reported to have caused water quality pollution,
Stream Sediments and Periphytic Diatom Communities in the
Surrounding Streams of the Aljustrel Mining Area in Portugal
(Luís et al., 2009) . Several species contents were found, such
as Al, As, Ca, Cd, Cu, Fe, K, Mn, Na, Ni, Pb, S, Sb and Zn,
in the stream area, while the surface water was found to be
contaminated with As, Cu, Cd, Fe, Pb, Zn with variations in a
concentration above the environmental quality standard (Luís
et al., 2009) .

Addressing the environmental impact of AMD requires
comprehensive and sustainable mitigation strategies. Efforts
are focused on preventing or minimizing the generation of
AMD through improved mining practices, waste management,
and the implementation of appropriate environmental regula-
tions. Treatment technologies are also employed to mitigate
the effects of existing AMD discharges, including neutraliza-
tion processes, sedimentation ponds, and constructed wetlands
that facilitate the removal of heavy metals and reduce acidity.
Reclamation and restoration efforts are crucial for rehabili-
tating AMD-impacted areas. Restoring affected ecosystems
involves the remediation of water bodies, soil amelioration, and
the reintroduction of suitable vegetation. These restoration
projects aim to recover biodiversity, improve water quality, and
promote the recovery of ecosystem functions. Furthermore,
public awareness and education campaigns are essential for
promoting responsible mining practices and fostering a greater
understanding of the environmental impacts of AMD. Collab-
oration between government agencies, mining companies, and
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local communities is vital to effectively manage and mitigate
the impact of AMD on the environment.

3.3 Recent Advances in AMD Treatment
3.3.1 Adsorption
Adsorption has identified as a highly effective method for re-
ducing pollutant parameters in AMD (Wibowo et al., 2022c;
Wibowo et al., 2022a), and recent studies have sought to ex-
plore novel adsorbent materials for this purpose. One such
material is shrimp shell waste Nunez-Gomez et al., 2019. This
approach is unique and has novel value since previous studies
have primarily focused on coconut shells as an adsorbent. The
study found that shrimp shell waste was highly effective in re-
ducing Fe levels, with a reduction of up to 99% at pH 7 and a
97% decrease at pH 4 (Nunez-Gomez et al., 2019) . However,
the decrease in Fe content in acidic conditions (pH 4) was less
effective due to heavy metal mobilization occurring quickly
under acidic conditions. On the other hand, there was a pre-
cipitation process on Fe metal in neutral conditions, leading to
an optimal decrease.

AMD treatment methods are not limited to the use of waste
materials. In fact, research has shown that bentonite modi-
fied with Fe3O4-chitosan can effectively neutralize AMD. This
nanocomposite has found to significantly reduce the amount
of Cr(IV) in AMD, despite the fact that this heavy metal is
rarely found in AMD in natural conditions and has different
characteristics than Fe. Chemical kinetics studies have revealed
that the optimal dose for adding bentonite-chitosan to AMD
is 60 mg, with an impressive adsorption capacity of 24 mg/g
(Feng et al., 2019) .

The process of reducing heavy metals and other pollutant
parameters in AMD occurs through the agglomeration of dis-
solved substances, such as heavy metals, BOD, COD, TSS, and
TDS, onto the surface of the adsorbent (Gopalakrishnan et al.,
2018) . The adsorption of pollutant material into the pores of
the adsorbent is driven by cohesive forces, hydrostatic forces,
and hydrogen bonding forces that act on the entire surface of
the adsorbent molecule (Hou et al., 2019) . Various attempts
have made to develop the materials used in the adsorption
process. A recent study reported that adsorbents could be
made with a simple technology that utilizes slow pyrolysis. The
new material reported to have succeeded in reducing the heavy
metal content while increasing the pH of AMD is a combination
of biochar derived from coconut shell and clamshell produced
simply by using a modified reactor (Wibowo et al., 2022a) . The
results of the study reported that biochar-clamshell was not
only able to absorb heavy metals but also succeeded in reducing
the content of Al, Ca, and Mg. Another recent study reported
that biochar was made from other abundant materials such as
coal and peat (Budihardjo et al., 2021) . In addition, these ma-
terials are also reported to be successfully combined in various
phases (solid-solid, solid-liquid and solid-colloid combination)
(Wibowo et al., 2022a) . The common materials that use in
adsorption process could be seen in Table 1.

The adsorption process between AMD and the adsorbent

occurs in physical and chemical adsorption types (Al-Ghouti
and Da’ana, 2020; Wang and Guo, 2020). The physical ad-
sorption process occurs when the intermolecular forces are
more significant than the attractive intermolecular forces or
the relatively weak attractive forces between the adsorbate and
the adsorbent surface (Van der Waals Force) (Qu et al., 2018) .
The Van Der Waals force occurs because of the contact be-
tween AMD as a fluid and the adsorbent as a solid material.
The second adsorption process that may occur between AMD
and the adsorbent occurs due to the exchange or sharing of
electrons between the adsorbate molecule and the adsorbent
surface so that a chemical reaction occurs (Ahmadijokani et al.,
2021) . If heavy metal sorption in AMD occurs under chemical
reaction conditions, the bonds that occur will be stronger than
chemical reactions. In detail, the different types of adsorptions
can be distinguished based on Table 2.

3.3.2 Bioremediation
The passive bioreactor is the most commonly used bioreme-
diation technique in treating AMD. Passive bioreactors use
various materials such as compost, manure, organic waste and
alkaline agents (Rambabu et al., 2020) , in which an anaero-
bic environment is created due to the fermentation of these
components. These conditions favour the biological reduction
of sulfate and metal precipitation (Robinson-Lora and Bren-
nan, 2011) . Combining omics, bioreactors, and microbiome
engineering will provide more significant potential for AMD
bioremediation processes. Aspects of vegetation can influence
the bioremediation process. This process has two constructed
wetlands (CW) techniques that are often used, namely un-
planted constructed wetlands (CCW) and planted constructed
wetlands (PCW). Many studies have reported the positive in-
fluence of wetland plants on increasing the pH of metal-rich
wastewater, possibly due to the release of organic acids and
exudates from plant roots (Dean et al., 2013) . Both provide a
significant difference in metal removal in AMD.

During the initial CW operation, AMD handling contributed
to an increase in pH due to the formation of organic acids (such
as humic acid, formic acid and oxalic acid), carbonate ions from
microbial oxidation of organic media as well as dissolution of
surface-bound hydroxyl ions from the surfaces of bamboo
chips and manure (Jiang and Li, 2020) . However, during the
process, alkalinity is produced through sulfate reduction. To-
wards the end of the study, there was a decrease in effluent
pH below the higher HLR. Judging from the dissolved COD,
PCW effluent samples were consistently higher than CCW.

PCW showed a reduction in sulfate of (85-30%), while
CCW gave a more significant reduction of (92-42%). It was
further observed that the sulfate concentration in PCW effluent
was always higher than CCW. This situation might indicate
the formation of a micro-aerobic zone due to the release of
oxygen near the vegetation roots, and the higher redox poten-
tial may suppress microbial-assisted sulfate reduction in PCW
(Aguinaga et al., 2019) . The alkali formation process is directly
related to sulfate reduction and the production of bicarbonate
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Table 1. Commonly Materials in Adsorption Method

Material Description References

Activated Carbon
Highly porous carbon material with a large
surface area and strong adsorption capacity.

(El Qada et al., 2006; Foo and Hameed,
2011; Ji et al., 2009; Kadirvelu et al.,

2004; Mariana et al., 2021)

Zeolites
Crystalline aluminosilicates with uniform

pore structures, suitable for adsorbing heavy
metals in AMD

(Erdem et al., 2004; Hong et al., 2019;
Motsi et al., 2009; Rios et al., 2008;

Wingenfelder et al., 2005)

Biochar

Carbon-rich material produced from
biomass pyrolysis, known for its adsorption
properties and potential for contaminant

removal

(Chen et al., 2021b; Deepa et al., 2019;
Fazal et al., 2020; Lyu et al., 2020;

Wibowo et al., 2023b)

Clay Minerals
Naturally occurring minerals such as

kaolinite, bentonite, and montmorillonite,
capable of adsorbing various contaminants.

(Borthakur et al., 2021; Ghorbel-Abid
and Trabelsi-Ayadi, 2015; Han et al.,
2019; Manohar et al., 2006; Rao and
Kashifuddin, 2016; Yu et al., 2013)

Fly Ash
Residue generated from coal combustion,
often used as an adsorbent due to its high

silica and alumina content.

(Gitari et al., 2006; Keller et al., 2020;
Kumar and Pakshirajan, 2021; Orakwue

et al., 2016; Sahoo et al., 2013)

Iron Oxides
Materials like iron hydroxides and iron
oxides, known for their high affinity for
heavy metals and other contaminants

(Muedi et al., 2021; Sibrell and Tucker,
2012; Verplanck et al., 2004; Yang et al.,

2015)

Modified Silica Gel
Silica gel modified with functional groups to

enhance its adsorption capacity and
selectivity for specific contaminants

(Koohestani et al., 2018; Wang et al.,
2023; Wilfong et al., 2022)

Carbon Nanotubes
Cylindrical carbon structures with high

aspect ratios, offering large surface areas and
excellent adsorption capabilities

(Gugushe et al., 2019; Jerez et al., 2014;
Ramokgopa et al., 2021; Rodríguez et al.,

2020)

Chitosan
Biopolymer derived from chitin, exhibiting
adsorption properties for heavy metals and

other contaminants in AMD

(Feng et al., 2019; Igberase et al., 2018;
Machodi and Daramola, 2020; Machodi
and Daramola, 2019; Ramasamy et al.,

2018)

Algal Biomass
Living or non-living biomass derived from
algae, utilized for the removal of metals and

nutrients in AMD

(Bwapwa et al., 2017; Du et al., 2022;
Martínez-Macias et al., 2019; Rose et al.,

1998)

Lignocellulosic Materials
Biomass materials derived from plant cell

walls, such as sawdust and rice husks, capable
of adsorbing heavy metals

(Burman et al., 2019; Han et al., 2005;
Han et al., 2019; Magowo et al., 2023;
Muhammad et al., 2017; Shin et al.,

2004)

Polymers
Synthetic materials with diverse structures

and functional groups, offering customizable
adsorption properties for AMD treatment

(Dlamini et al., 2019)
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Material Description References

Hydroxyapatite
Calcium phosphate-based material with high

affinity for metal contaminants in AMD
(Agha Beygli et al., 2019; Li et al., 2021;

Oliva et al., 2012; Street, 2016)

Bentonite
Clay mineral with excellent adsorption

capacity, commonly used in combination
with other adsorbents for AMD treatment

(Hussain and Ali, 2021; Kubilay et al.,
2007; Liu and Zhou, 2010; Thakur et al.,

2021; Zhan et al., 2019)

Mesoporous Silica
Silica materials with well-defined mesopores,
providing high surface areas and enhanced

adsorption capabilities

(Falayi et al., 2019; Lachowicz et al.,
2019; Ramasamy et al., 2018)

Graphene Oxide
Two-dimensional carbon-based material
with exceptional adsorption properties for

various contaminants in AMD

(Dong et al., 2015; Etale et al., 2021;
Rahimi and Mohaghegh, 2017)

Manganese Oxides
Manganese-based materials that exhibit

strong adsorption affinity for heavy metals
and other pollutants in AMD

(Outram et al., 2018)

Walnut Shell
Natural adsorbent derived from walnut

shells, offering potential for the removal of
heavy metals from AMD

(Chang et al., 2022; Gheju and Balcu,
2021; Li et al., 2019; Moreno-Barbosa

et al., 2013)

Table 2. Different Physical and Chemical Reactions in Adsorp-
tion

Chemical Sorption Physical Sorption

Large adsorption enthalpy
(usually between 40-400

kJ/mol)

Small adsorption enthalpy
(usually less than 20

kJ/mol)

Adsorption occurs in the
monolayer

Multilayer adsorption
occurs

It can occur at high
temperatures

Occurs at temperatures
below the boiling point of

the adsorbate

The adsorption process
occurs when the system has

an activation energy

It does not involve the
activation of energy

ions. These conditions are favourable because they are neces-
sary for the growth and function of sulfate-reducing bacteria
(SBR) (Dev et al., 2016) . The biological assimilation of sulfur
into plants is also known to contribute to the overall sulfate
removal efficiency in CWs (Wu et al., 2013) .

This method is proven to be able to remove Fe (99–77%),
Zn (98–90%), Co (96–92%), Ni (89–96%) and Cr (99–95%).
Statistical analysis showed a significant difference (p<0.05) be-
tween the overall metal removal efficiency of CCW and PCW,

except for Al, Mn and Cr. Mn stripping can be caused by the
release of weakly adsorbed Mn2+ ions, and the simultaneous
release of Mn without undergoing treatment because the pre-
cipitation of manganese in the (oxy-)hydroxide form requires
pH>9. Under anaerobic/anoxic conditions, Mn2+ remains in
a reduced soluble state and is thus very difficult to remove
(Mohan and Chander, 2001; (Neculita and Rosa, 2019) ). The
addition of 0.05 M EDTA showed a fairly high extraction effi-
ciency of Fe, Zn and Cr metals. The addition of EDTA showed
the recovery of precious metals through precipitation (30–98%).
The bioremediation process could by providing using several
methods like described on Table 3.

3.3.3 Constructed Wetlands
Acid mine drainage (AMD) is an emerging environmental issue
that is difficult to avoid in most mining activities (Oberholzer
et al., 2022) . AMD is formed when sulfide minerals in the
soil are exposed to a rich oxygen atmosphere so that they un-
dergo an oxidation process and then react with water, air, and
biotic components. This result causes an increase in the con-
centration of SO4

2− ions in the environment, especially the
aquatic environment (Tong et al., 2021) . Since sulfates are
strong acids, their presence makes water acidic, dissolves and
leaches dangerous heavy metals into the environment.

The primary source of AMD is active activities or aban-
doned mining sites, which use open-pit or underground mining
systems. In addition, AMD can also source from tailing dumps,
ore stockpiles, pit lakes, and sludge ponds (Pat-Espadas et al.,
2018) . Since AMD will harm the environment, it must be
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Table 3. Description of Bioremediation Method on AMD Treatment

Treatment Method Description

Passive Treatment

Utilizes natural processes to treat acid mine drainage.
Involves constructing wetlands, ponds, or other systems.

Relies on microbial activity to neutralize acidity.
Enhances biological reactions for metal precipitation.

Requires long-term monitoring and maintenance.

Active Treatment

Involves adding microbial cultures or nutrients.
Accelerates the natural degradation of pollutants.

Utilizes sulfate-reducing bacteria or iron-oxidizing
bacteria to reduce metal concentrations.

Requires continuous monitoring and management.

Constructed Wetlands

Uses specially designed wetland systems.
Promotes the growth of microorganisms and plants.

Removes metals through adsorption and precipitation.
Effective for treating low-to-moderate acidic drainage.

Bioprecipitation
Utilizes microorganisms to precipitate metals.

Stimulates the growth of metal-resistant bacteria.
Reduces metal concentrations through biomineralization.

Bioleaching
Involves using microorganisms to extract metals.

Enhances the solubilization and recovery of metals.
Uses acidophilic bacteria or fungi in the process.

Bioventing

Relies on introducing air or oxygen into contaminated
soil or groundwater.

Promotes the growth of aerobic bacteria for degradation.
Reduces the concentration of pollutants over time.

Microbial Fuel Cells

Harnesses the metabolic activity of microorganisms.
Converts organic matter into electrical energy.

Can be used to treat acid mine drainage and generate
electricity simultaneously.

treated to avoid severe environmental damage. This section
describes AMD treatments employing the constructed wetland
treatment system (CWTS), which discusses the commonly used
design parameters (flow configuration and plant species used).

CWTS is one of the wastewater treatment methods that pri-
oritize an ecological approach. This method offers a wastewater
treatment solution that is more environmentally friendly, safe,
and at a relatively more affordable cost (Wu et al., 2019) . CW
is an artificial wetland designed as closely as possible to a natural
wetland to remove contaminants and improve water quality
by optimizing physical, chemical, and biological processes in
integrated conditions.

Besides being widely used in domestic wastewater treat-
ment, CWTS has also widely applied in processing AMD pro-
duced by various mining activities. In AMD treatment, the

CWTS is categorized as a passive treatment method combin-
ing several processes, including biogeochemical, geochemical,
and physical (Singh and Chakraborty, 2021) . This method
involves interactions between substrates, microorganisms, and
plants to remove heavy metals contained in AMD. Several
types of removal mechanisms are possible, including filtration,
adsorption, plant absorption, physical precipitation, chemical
precipitation, and the action of microorganisms (Tong et al.,
2021) . Although it uses fewer chemicals or modern technolo-
gies, which can save operational costs, this method requires
a relatively long processing time than other waste treatment
methods.

In general, CWTS can be classified into two categories; (1)
based on the water flow regime (surface flow and sub-surface
flow), and (2) based on the type of plant or vegetation grown.
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Figure 5. Schematic Layout of Surface Flow and Subsurface
Flow CW

CWTS with surface flow type (S-CW) is generally a shallow
basin where the treated wastewater is directly contacted with
the atmosphere and growing vegetation (Figure 5). CWTS
with the surface flow can be grouped based on the type of
macrophyte grown, such as emergent, submerged, floating
leaved plant, and free-floating macrophyte. CWTS with the
subsurface type (SS-CW) is generally a sealed basin where the
treated wastewater is placed 0.3–0.9 meters below the ground
surface and is channeled through sand or gravel (Figure 5). On
the surface of the SS-CW, plants whose roots will reach the
wastewater are grown. This type of CWTS can be classified
based on the flow type, namely horizontal and vertical.

Figure 6. Schematic Diagram of Hybrid CWST (Wang et al.,
2021b)

Based on their removal performance, each type of CWTS
exhibited different efficiency and selectivity against specific
contaminants. Many reports have stated that SS-CW produces
higher metal removal than S-CW for certain metals such as Al,
Mn, Ni, and Zn. As for Fe, using both methods produces the
same efficiency (Pat-Espadas et al., 2018) . Therefore, these

methods can also be combined to produce a hybrid system with
several configurations to improve the removal performance.
For instance, Wang et al. have designed a CWTS involving
SS-CW followed by S-CW for treating AMD in a lab-scale
application (Figure 6). They reported that the designed hybrid
CWTS exhibited high removal efficiencies, 89.4% for Mn, and
99% for Fe, Zn, Cd, and Cu. Several research results using
CWTS to treat AMD using the S-CW, SS-CW, and hybrid
methods can be seen in Table 4.

In addition to the flow type, the selection of plants or vege-
tation also significantly impacts the contaminant removal per-
formance of a CWTS. Zubair et al. (2020) have conducted a
series of studies to investigate the ability of Typha angustifolia
to remove Fe using the S-CW method. They reported that this
plant could remove up to 70.88% Fe. In another study, Nguyen
et al. studied the effect of using cattails in pilot-scale AMD
treatment using the S-CW method. The results indicated that
using these plants could significantly reduce the metals in AMD.
The presence of cattail in CWTS reduced the metal content of
Cd, Zn, Cu, and As, respectively, by 83.8%, 84.6%, 57.1%, and
45.4% (Zubair et al., 2020) . Several other plant species tested
for AMD treatment under the CWTS method can be seen in
Table 5.

3.3.4 Electrochemical Treatment
Electrochemical treatment has emerged as a promising method
for the treatment of AMD, offering an efficient and environ-
mentally friendly approach to mitigate the impacts of this
widespread issue. Electrochemical treatment utilizes electro-
chemical reactions to remove contaminants from AMD, tar-
geting both acidity and heavy metal content. This discussion
will explore the principles, benefits, and challenges associated
with electrochemical treatment for AMD. At its core, elec-
trochemical treatment involves the application of an electric
current to facilitate chemical reactions that drive the removal
or transformation of contaminants. In the context of AMD,
electrochemical treatment typically involves two key processes:
electrocoagulation and electrooxidation.

Electrocoagulation is primarily employed to address the
high metal concentrations in AMD. During this process, metal
ions present in the acidic water are attracted to oppositely
charged electrodes, forming coagulated particles. These parti-
cles can then be separated from the treated water through sedi-
mentation or filtration. Electrocoagulation offers advantages
such as rapid metal removal, high efficiency, and the ability to
handle a wide range of metal contaminants. Electrooxidation,
on the other hand, focuses on reducing the acidity of AMD
and promoting the oxidation of sulfide minerals. This pro-
cess occurs at the anode, where oxygen evolution takes place,
resulting in the generation of hydroxide ions that neutralize
acidity. Simultaneously, the oxidation of sulfide minerals leads
to the formation of sulfate ions, reducing the sulfide content in
the AMD. Electrooxidation offers benefits such as pH adjust-
ment, reduction of sulfide concentrations, and the potential for
simultaneous removal of heavy metals.
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Table 4. Type of CWTS and its Metal Removal Efficiency in AMD Treatment

CWTS Removal Efficiency References

SS-CWST
99.7% (Cr), 97.8% (Ni), 93.7% (Co),

91.6% (Fe)
(Singh and Chakraborty, 2020)

S-CWST 70.88% (Fe) (Zubair et al., 2020)

SS-CWST
99–77% (Fe), 98–90% (Zn), 96–92% (Co),

89–96% (Ni) and 99–95% (Cr)
(Singh and Chakraborty, 2021)

Hybrid (S-CWST + SS-CWSR) 89.4% (Mn), 99% (Fe, Zn, Cd, and Cu) (Wang et al., 2021a)

Table 5. Plants used in AMD Treatment Through CWTS

Plant CWTS type Metal Removal References

Typha angustifolia S-CW 70.88% (Fe) (Zubair et al., 2020)

Typha latifolia S-CW 54.13% (Se) (Etteieb et al., 2021)

Phragmites australis SS-CW
>96% (As and Fe)

(Lizama-Allende et al., 2021)>94% (Pb)

Iris pseudoacorus SS-CW
> 98% (Cu), > 95% (Cd),

91% (Cr) and > 91% (Zn)
(Chen et al., 2021b)

One of the key advantages of electrochemical treatment
for AMD is its versatility and adaptability to varying water
chemistry and contaminant compositions. The electrochem-
ical system can be customized and optimized based on the
specific characteristics of the AMD, allowing for effective treat-
ment regardless of the site-specific conditions. Additionally,
electrochemical treatment can be combined with other pro-
cesses, such as precipitation or membrane filtration, to further
enhance the overall treatment efficiency. Another significant
advantage of electrochemical treatment is its potential for re-
source recovery. The removed heavy metals can be recovered
from the electrode surfaces, offering the possibility of recycling
and reusing these valuable resources. This aspect aligns with
the principles of circular economy and sustainable resource
management, making electrochemical treatment an attractive
option for AMD treatment.

However, electrochemical treatment for AMD is not with-
out challenges. The high energy requirements and operational
costs associated with electrochemical systems can be signifi-
cant barriers to implementation, especially in large-scale ap-
plications. Additionally, the electrode materials used in the
treatment process may be susceptible to degradation and foul-
ing over time, requiring regular maintenance and replacement.
The optimization of operating parameters, such as current
density, pH control, and electrode configuration, also requires
careful consideration to achieve optimal treatment efficiency.

Electrochemical methods are reported to prevent AMD
formation by protecting the cathode of the ore body (Bejan
and Bunce, 2015) . In addition to preventing the formation
of AMD, electrochemical methods can also be used to reduce
pollutant parameters in AMD. A recent study reported that the
combination of electrochemical/CaO methods increased the
pH of AMD from 2.7 to 6.71. Besides that, the combination
of electrochemical/CaO methods also reduced the content of
sulfate, Hg, Pb, V, Cr, Mn, Fe, Zn, Co, Ni and Cu became very
small (between 0.001-0.074) (Radić et al., 2014) .

The process of reducing heavy metal levels in AMD is influ-
enced by the strong current flowing at the anode and cathode.
The electrochemical process of AMD processing follows Ohm’s
law associated with Faraday’s law I which states that the mass
of the substance formed at each electrode is proportional to
the strength of the electric current flowing in the electrolysis. A
study confirmed this result for 10-60 mA that a bigger current
could better reduce pollutants from AMD (Bunce et al., 2001) .
This condition informs that the greater the current flowing at
the cathode and anode, the greater its ability to reduce heavy
metal content in AMD. The electrochemical process in AMD
processing occurs when the anode (Al electrode) is oxidized
to Al3+, the anode (C electrode) undergoes Cl− oxidation to
Cl2, and AMD is reduced to OH- resulting in heavy metal
degradation, coagulation and an increase in AMD pH. The
process of reducing the pollutant content in AMD using the
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electrochemical method can be seen in Figure 7.

Figure 7. Electrochemical Oxidation in Pollutant Removal (Li
et al., 2010)

Another effort that can be made to increase the use of elec-
trochemical to reduce pollutant parameters in AMD is to com-
bine it with other methods. A recent study reported a combi-
nation of microbial/electrochemical methods. This method is
made using three modified reactors to be able to utilize electro-
chemical and microbial electrochemical for AMD treatment.
The study’s results reported that combining these methods
could reduce pollutant parameters up to >80%. Although this
method succeeded in reducing pollutant parameters in AMD,
the pH condition in AMD was unstable. This condition was
caused by the accumulation of Cl− (Brewster et al., 2018) . The
others electrochemical method for AMD treatment can be seen
in Table 6.

3.3.5 Membrane Technology
Membrane technology is a promising approach for treating
AMD, which is a major environmental problem in mining ar-
eas. The high acidity and heavy metal content of AMD pose
significant challenges for traditional treatment methods. How-
ever, membrane technology offers a sustainable solution for
AMD treatment by selectively filtering out pollutants and re-
covering valuable resources. The use of semi-permeable mem-
branes in filtration methods such as reverse osmosis (RO) and
nanofiltration (NF) has shown to effectively remove dissolved
metals from AMD, resulting in highly purified water that meets
environmental discharge standards (Agboola, 2019) .

Membrane technology has several advantages over tradi-
tional AMD treatment methods. Firstly, it is a low-waste and
energy-efficient approach that produces minimal waste com-
pared to other methods that generate large volumes of sludge.
Secondly, it enables the recovery and reuse of valuable metals
and minerals present in the AMD solution, contributing to a
circular economy approach to resource management. Thirdly,
membrane technology can be adapted to treat a variety of AMD
sources, including low-pH, high-salinity, and complex waste

streams, making it a versatile and flexible solution for AMD
treatment.

Research on membrane technology for AMD treatment
is ongoing, with a focus on optimizing the performance and
durability of membranes, reducing costs, and developing scal-
able and practical systems (Houchins et al., 2012) . Advances in
membrane materials, design, and operation have improved the
efficiency and effectiveness of membrane technology for AMD
treatment. Moreover, research on the recovery and reuse of
valuable metals and minerals from AMD is also progressing,
with efforts focused on developing cost-effective and environ-
mentally friendly recovery methods. Membrane technology
offers an important opportunity for the sustainable manage-
ment of AMD, and ongoing research and development will
continue to advance its effectiveness and feasibility.

The membrane distillation process is often used to treat
groundwater polluted by acid mine drainage and wastewater
(Asif et al., 2021) . MD can remove metals and organic com-
pounds up to 98-100% (Asif et al., 2021; Kesieme and Aral,
2015). Incorporating persulfate increases the process of remov-
ing micropollutants by 20% and reduces accumulation (Silva
et al., 2018) . The content of iron oxide during the process can
increase the occurrence of scaling. This hypothesis is proven
through the characterization of the fouling layer (Asif et al.,
2021) . Distillation membranes often recover copper contained
in AMD. A synthetic adsorbent was used, namely mesoporous
silica material SBA-15. The material was prepared hydrother-
mally and modified by Mn loading and amine grafting. Mod-
ified SBA-15 can selectively adsorb Cu from AMD solution
with pH adjusted to 5.2 (Ryu et al., 2020) . Direct contact mem-
brane distillation (DCMD) can recover water contaminated
with AMD with a high purity of 80%. Concentrated AMD
solution can increase the adsorption capacity of Cu used by
DCMD. The process of clarifying copper deposits also often
uses a filtration membrane. Sulfide precipitation combined
with membrane microfiltration can recover copper up to 100%.
Each AMD requires a different flux value, approximately more
than 0.1 L/m2s. Membrane microfiltration can be combined
with the gravity method to get better results (Menzel et al.,
2021) .

4. COMPARISON OF SEVERAL METHODS FOR
TREATING AMD
Adsorption is a widely used method for treating AMD due
to its high removal efficiency for heavy metals and pollutants.
It has the advantage of using readily available adsorbent ma-
terials, making it easily accessible for implementation. The
operation of adsorption is relatively simple with low energy
requirements, and it can be integrated into existing treatment
systems. However, adsorbents may require regeneration or
proper disposal to prevent secondary contamination. The per-
formance of adsorption can be influenced by factors such as pH,
temperature, and the type of adsorbent used. Additionally, ad-
sorbents have limited capacity and need periodic replacement
or replenishment.
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Table 6. Electrochemical Method for Treating AMD

Electrochemical
Method

Description Abilities References

Electrocoagulation
Uses electric current to
coagulate and remove

contaminants from AMD.

Precipitates contaminants,
removes suspended solids, and

improves water quality.

(Foudhaili et al., 2020; Foudhaili
et al., 2019; Nariyan et al., 2018;
Oncel et al., 2013; Stylianou et al.,

2022)

Electrooxidation

Applies electric current to
oxidize and degrade

organic and inorganic
pollutants.

Efficiently removes organic
compounds, destroys pathogens,
and reduces contaminant levels.

(Sun et al., 2015b; Sun et al.,
2013; Tu et al., 2017; Zhai et al.,

2013; Evangelou and Zhang,
1995)

Electro-Fenton

Generates oxidizing agents
using electricity and Fe2+

catalysts for contaminant
breakdown.

Effective for degrading organic
pollutants and promoting

oxidation reactions in AMD.

(Chai et al., 2020; Huang et al.,
2020; Sun et al., 2015a; Sun et al.,

2018; Zhai et al., 2019)

Electrodialysis

Applies electric field to
selectively transport ions
through ion-exchange

membranes.

Concentrates and separates target
ions, allowing for the removal of

specific contaminants.

(Juve et al., 2022; Buzzi et al.,
2013; Liu et al., 2022b;

Martí-Calatayud et al., 2014)

Bioremediation offers a cost-effective and environmentally
friendly solution for AMD treatment. Microorganisms can con-
vert metals into less toxic forms through bioreduction or bioac-
cumulation processes, while plants can uptake and accumulate
metals in their biomass via phytoremediation. Bioremediation
is suitable for long-term, sustainable treatment. However, it
may have limitations in treating certain contaminants or in cases
of extreme pH or high metal concentrations. The treatment
efficiency of bioremediation can also be affected by environ-
mental factors, such as temperature and nutrient availability.
Furthermore, bioremediation may require a longer treatment
time compared to other methods.

Constructed wetlands provide a sustainable and passive
treatment option for AMD. Wetland vegetation, soil, and mi-
croorganisms work together to absorb and transform contam-
inants, while the wetland media filters and retains pollutants.
Constructed wetlands are effective in removing metals, neu-
tralizing acidity, and improving water quality. However, their
implementation requires sufficient space and long-term main-
tenance to sustain their treatment performance.

Electrochemical technologies involve the application of
an electric current to treat AMD. Methods such as electroco-
agulation, electrooxidation, and electro-Fenton can remove
contaminants through precipitation, oxidation, and the gener-
ation of reactive species. Electrochemical methods offer high
treatment efficiencies and can selectively target specific contami-
nants. However, they may require energy input and specialized
equipment for operation, making them relatively expensive
compared to other methods.

Membrane technologies, such as electrodialysis and mem-
brane electrolysis, utilize selective membranes to separate and
concentrate contaminants from AMD. They are effective in de-
salination and targeted contaminant removal. However, mem-
brane technologies may be limited by fouling, requiring proper
pre-treatment and maintenance to sustain their performance.
Thus, the selection of a treatment method for AMD depends
on various factors, including the specific contaminants present,
site conditions, treatment goals, and cost considerations. A
combination of different techniques or the integration of mul-
tiple treatment steps may be necessary to achieve desired water
quality standards while minimizing environmental impacts and
costs.

5. RESOURCE RECOVERYOPPORTUNITIES FROM
AMD
AMD is one toxic wastewater due to its low pH and high content
of various heavy metal ions (Ighalo et al., 2022) . Treatment of
AMD mainly focuses on increasing the pH and reducing the
concentration of dissolved metal ions (Hu et al., 2022) . Most
AMD treatments involved neutralization and precipitation pro-
cesses (de Moraes and Ladeira, 2021) . The precipitation re-
sulted in the sludge containing a solid form of the precipitated
metals (Ighalo et al., 2022) . Precipitated metals have the op-
portunity to be recovered and further utilized. Not only by
precipitation, simultaneous metal recovery and algae-lipid pro-
duction were also reported by Brar et al. (2022) , which involve
the high metal tolerance algae strain of Chlorella vulgaris for
the treatment of AMD. Recent developments in the resource
recovery opportunities from AMD are tabulated in Table 7.
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Table 7. Recent Advances in Resource Recovery Opportunities from AMD

Method Recovered resource Summary Reference

Micro-flotation Pyrite

• Utilization of AMD increased the
pyrite floatation by 64%

(Bai et al., 2021)
• The addition of AMD improves the

adsorption of dixanthogen which
promotes the pyrite floatation

• NaOH addition significantly reduces
the concentration of heavy metals in

AMD
Biosorption and
bioaccumulation

using algae

Iron, aluminium,
mangan, and

biodiesel

• C. vulgaris was able to produce 0.35
g lipid/g biomass when cultivated

using AMD at pH 8
(Brar et al., 2022)

• Converted algae biomass into
biodiesel met the international

specification

• Common metals of Fe, Al, Mn, Ca,
Mg, Cd, and Pb can be

simultaneously recovered with the
rare earth elements

Phosphate
precipitation and

ion exchange
Rare earth elements

• pH and total phosphate played an
essential role in the recovery

(Hermassi et al., 2022)

• PrPO4(s) and CePO4(s) were
detected using XRD

• H2O2 induced the stabilization of
Fe2+ to Fe3+

Selective
precipitation

Iron
• Iron was recovered using OH

selective precipitation
(Hu et al., 2022)

• Economic analysis showed that the
used method is 14 cents cheaper per

m3

• Fractionation of rare earth elements
reaches up to 85% with LEWATIT

MDS 200H resin

Ion exchange Rare earth elements
• Longer residence time promoted

fractionation
(José and Ladeira, 2021)

• Elution with 0.02 M EDTA
promoted the separation of

aluminium and calcium from rare
earth elements

• Biological sulfate reduction
facilitated the metal removal from

AMD

Fluidized bed
bioreactor

Copper, lead,
cadmium, zinc,
nickel, and iron

• More than 95% of metal removal
and around 50% of recovery were

achieved
(Kumar and Pakshirajan, 2021)

• Lower recovery was achieved in
influent pH of 3 compared to a pH 7
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Method Recovered resource Summary Reference

Clay adsorption Rare earth elements
• Acid desorption was used to reclaim

the sorbed elements (Liu et al., 2022a)
and yttrium • Recovered rare earth elements

reached 3.37 kg/d after precipitation

Sulfide precipitation
and membrane

filtration
Copper

• A total of 100% copper recovery can
be achieved by integrating sulfide
precipitation and microfiltration

(Menzel et al., 2021)

• The final turbidity of the AMD was
less than 2 NTU

Precipitation
Rare earth elements

and uranium

• Adding Fe into the AMD induced
the rare earth elements to recover via

Fe-Al precipitation
(de Moraes and Ladeira, 2021)

• Adding Fe to neutral pH reduced
the efficiency of rare earth elements

and uranium precipitation

Polymer inclusion
membrane

Copper
• The hydrophobic modification was
used to enhance the selectivity and

stability of the membrane
(Qiu et al., 2021)

• The 2-aminomethylpyridine
showed the highest increase in

membrane selectivity for copper ion
and stability

Membrane
distillation

Iron

• A combination of direct contact
membrane distillation and

photocatalysis was used to recover
iron from AMD

(Yang et al., 2015)

• The utilization of Fenton catalyst
recovered iron-oxalate

Referring to Table 7, iron, copper, and rare earth elements
are the most mentioned resource to be recovered from the
AMD treatment. Fifty to 100% recovery efficiency can be ob-
tained for various metals (Kumar and Pakshirajan, 2021; Men-
zel et al., 2021). Several technologies involved in recovering
metals from AMD mainly focused on selective precipitation by
adjusting the wastewater pH (Hu et al., 2022; de Moraes and
Ladeira, 2021). Besides the selective precipitation by adjusting
pH, sulfide and phosphate precipitation were also mentioned
to recover the soluble metals in AMD (Hermassi et al., 2022;
Menzel et al., 2021). The separation of metals needs to be
conducted when precipitation is used as the recovery method.
If adsorption or ion exchange methods were used, elution or
desorption are needed to recover the desired metal from the
adsorbent or resin. Recent advances also reported using AMD
as a growth medium for algae after neutralization. Algae species
of C. vulgaris were used by Brar et al. (2022) as they can with-
stand high metal exposure and simultaneously perform biosorp-
tion and bioaccumulation to reduce the metal concentration in

AMD. The algae biomass produced after metal desorption can
be processed further into biodiesel, which opens new opportu-
nities in greener technology (Kurniawan et al., 2021) .

6. CHALLENGES AND PROSPECTS

AMD is generated by rocks and tailings of the mineral process-
ing activity. The oxidation of some typical minerals induces
the formation of AMD. Therefore, the AMD leachable from
minerals oxidation under the influence of soluble salts or metal
oxides are not entirely understandable (Tabelin et al., 2020) .
Despite the focus on the formation of AMD, the chosen tech-
nology for AMD treatment is also necessary to mitigate the
environmental impact of AMD formation. Managing AMD
containing high metal concentrations is compulsory to prevent
ground and surface water contamination. As mentioned in
the previous subsection, some technologies may have a good
treatment efficiency but need higher maintenance and invest-
ment costs (Vital et al., 2018) . Since the nature of AMD is
acidic, precipitation is always done by adding standard alkali
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solutions such as lime, sodium carbonate, and sodium hydrox-
ide as pre-treatment. Therefore, waste material from tailings
was reported to be used as AMD neutralization. The treated
AMD can achieve pH around 6.5–8.5, satisfying for removing
metals. However, the feasibility and environmental footprint of
the material should be considered in the future study as it was
comparable with common alkali materials (Kaur et al., 2018) .
The two-step ferrite-formation process, which was introduced
by Igarashi et al. (2020) , may give some advantages compared
to the conventional neutralization process using lime. However,
the process depends on the concentration of silicate (Si). When
the Si concentration is higher than 4 ppm, ferrite formation is
limited. More studies regarding the effective control of Si con-
centration are needed to get a higher ferrite formation (Igarashi
et al., 2020) . Other considerations that should be determined
to remove the pollutants from AMD are post-treatments of
neutralization such as electrocoagulation, chemical coagulation,
adsorption and ion exchange (Nariyan et al., 2018) .

Membrane separation technology is an advanced AMD
treatment that is still limited to be found in the literature. Foul-
ing becomes the most significant disadvantage of the applica-
bility of this technology. Therefore, effective pre-treatment
should be applied to achieve higher efficiency through the mem-
brane. Consequently, the optimum operating condition of
the membrane system should be studied further (Pino et al.,
2018) . Another advanced membrane separation, forward os-
mosis (FO), considered a novel and advanced membrane pro-
cess, is still not applicable in a broader range of AMD. However,
this technology is the potential for further process development
(Vital et al., 2018) . Integrating technology such as chemical
precipitation and EC improved efficiency and reduced weak-
nesses. However, the potential use of this integrated system
needs to be explored deeply since the potential of by-product
generation may harm the environment (Nariyan et al., 2018) .
Another potential integration system using submerged mem-
brane distillation and zeolite sorption system is also introduced
in the literature. This integrated technology was favourable
for removing many heavy metals in AMD. However, a lower
removal rate may have resulted from a higher pollutant con-
centration. Thus, testing the applicability of this technology in
long-term experiments is needed to be an alternative solution
for treating AMD (Ryu et al., 2019) . Biomining technologies
are also another emerging technology that researchers should
consider. The system’s limitation is the instability consortia to
treat wastewater with lower pH effectively. Bioaugmentation
of acidophilic consortia is still needed to reduce the chemical
and physical treatment dependencies, resulting in a higher cost
and complex installation (Quatrini and Johnson, 2018) .

7. CONCLUSION

Mining activities have reported as activities that cause a decrease
in the quality of surface water and groundwater. The decrease
in pH and the increase in heavy metals in the water around
the mining area are caused by the oxidation process or contact
between air, water and sulfide minerals. The role of bacteria

is also reported to be very significant in forming AMD. Some
bacteria can even increase the formation of AMD up to 6 times.
AMD is a hazardous waste that can cause environmental and
human health problems. Various studies have reported that
AMD has contaminated the soil, causing plants to be exposed
to heavy metals. Even some endemic plants in Portugal and
Spain were reported to be contaminated with heavy metals
from AMD. Besides being harmful to the environment, heavy
metal contamination found in AMD has also reported to have
caused various diseases in humans and caused death.

AMD is divided into five types due to differences in the
characteristics of the constituent rocks. Various attempts have
made to reduce pollutant parameters in AMD. The formation
of AMD is different in each place. Adsorption is one method
that is widely reported to be successful in reducing heavy metal
levels in AMD. The adsorption process occurs because of the
contact between the adsorbent and AMD. There are two types
of adsorption processes, namely physical and chemical adsorp-
tion. Physical adsorption is an adsorption process that occurs
on the surface of the adsorbent, has small enthalpy energy (less
than 20 kJ), and multilayer adsorption occurs at temperatures
below the boiling point of the adsorbate, does not involve acti-
vation energy and chemical adsorption which has prominent
characteristics. Adsorption enthalpy (usually between 40-400
kJ/mol), adsorption occurs in the monolayer, can occur at high
temperatures, and the adsorption process occurs when the sys-
tem has activation energy.

CW is one of the most straightforward and easy-to-apply
methods to reduce heavy metal content and increase pH in
AMD. This method utilizes the microbial community and phy-
toremediation processes from plants that can absorb heavy
metals through their roots. In addition, the relatively alkaline
CW conditions can increase the pH so that some heavy metals
can be precipitated. Another method that can be used is the
electrokinetic method. This method utilizes the current flow-
ing at the anode and cathode so that it can absorb heavy metals
in AMD. Its success is influenced by several factors, such as
the operating condition and the distance between the anode
and cathode. The last method that can be used is the mem-
brane method. Unfortunately, this method is not economical
because it requires an enormous cost to make the material.
Thus, this paper successfully provides more understanding
of recent advances in the prevention of AMD formation and
AMD mitigation with their limitation.
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